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ABSTRACT 

A method of studying the swelling and thermal behavior of intumescent materials using under- 
standing of the basic physical and chemical processes is described. The material is treated as 
a highly viscous fluid with properties dependent on temperature. The growth rate, migration, 
and thermal effects of a large number of bubbles are individually calculated using approximate 
analytical solutions to mass, momentum, and energy equations, and the collective behavior is 
obtained as a summation of the individual velocity and temperature fields. The approach and 
implementation of this model are described and demonstrated. 
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INTRODUCTION 

Intumescent materials provide a thermal and physical barrier to slow the transport of heat and 
the rapid flame spread of fires. On exposure to the heat flux from a fire, the temperature with~n 
these materials rises, causing the thermoplastic binder to melt. At a critical temperature, an 
endothermal chemical reaction releases gases, which form large numbers of small bubbles and 
result in a swelling of the intumescent layer to many times its original thickness. Solidification 
through cross-linking provides a thick multicellular char that insulates the protected surface 
and reduces the amount of material that becomes involved in the fire [I]. Intumescent fire 
retardants have a significant environmental advantage over halogen-based fire retardants, which 
are effective but tend to release corrosive, toxic, and potentially obscuring gases in a fire [ 2 ] .  

Careful design of the intumescent system is required to provide effective fire protection. The 
order and timing of chemical events are critical. For instance, if the thermoplastic binder is too 
viscous when the gasification reaction begins, the resistance to bubble growth will prohibit the 
necessary swelling. If the thermoplastic binder is not viscous enough, the bubbles will be large, 
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resulting in a fragile char or in a char in which the bursting of bubbles before solidification has 
prevented swelling. Selection of chemical components for intumescent paints and, recently, of 
additive systems for commercial polymers [2] has proceeded through empirical methods and 
been documented primarily in the patent literature. There is as yet only a limited understanding 
of the physical mechanisms that govern intumescent behavior. 

Some understanding of the mechanisms leading to thermal protection has been obtained using 
one-dimensional models that treat the swelling polymeric material as a single layer with time- 
varying effective physical parameters [3,4] or as a set of layers consisting of virgin polymer and 
char separated by a thin pyrolysis zone [5,6 ,7] .  These models have identified two mechanisms 
responsible for slowing the transport of heat. First, the gasification reaction is endothermal, 
causing energy to be absorbed during the swelling phase. The second mechanism is the reduced 
thermal conductivity of the final char. Because the rate of swelling must be provided as an input 
for these models, they are unable to provide insight into the complicated sequence of physical, 
chemical. and thermal events that characterize intumescent behavior. 

The three-dimensional model described in this paper incorporates the fundamental hydrody- 
namics, chemical reactions, and heat transfer leading to the swelling and thermal protection 
provided during intumescence. In this model, the intumescent material is represented as a vis- 
cous fluid whose viscosity is dependent on temperature. To represent material samples of a 
size compatible with the cone calorimeter, approximately 10,000 infinitesimal bubble nucle- 
ation sites are randomly distributed through the initial geometry. When a heat flux applied to 
one side of the material raises the temperature at a nucleation site to a critical value for gasi- 
fication, the bubble begins to grow. Its growth rate, rate of migration, and thermal effects are 
determined by equations of mass, momentum, and energy solved under local conditions. The 
collective behavior of the system on a global scale is determined by summing the results of 
calculations for individual bubbles. 

This problem is awkward in the sense that a large number of bubbles must be considered, 
making accurate solution of the governing equations impossible due to the complex set of 
boundary conditions at the interface of each bubble and along the sides of the melt. In our 
approach to this problem, we make approximations that are designed to retain details of the 
mechanisms yet still enable calculations over a reasonable (one or two day) time period on 
today's scientific workstations. The eventual goal of this model is to provide a tool for design 
through improved understanding of the sensitivity of intumescent characteristics to various 
physical and chemical parameters. 

HYDRODYNAMICS SUBMODEL 

The intumescent sample is considered to be an incompressible fluid with viscosity and sur- 
face tension dependent on temperature. Initially, the sample takes the shape of a rectangular 
slab and contains a large number of infinitesimally small bubble nucleation sites randomly dis- 
tributed throughout the volume. When the temperature at a specific nucleation site reaches the 
degradation temperature, the bubble begins to grow. We want to know the effects of this bubble 
growth on the migration of bubbles throughout the melted polymer and on the melt itself. We 
begin by looking at the velocity field generated by a single expanding bubble. 
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FIGURE 1: Geometry of the expanding bubble in a thermal gradient. 

The geometry of a solitary bubble expanding in a uniform temperature gradient is illustrated 
in Figure 1. The bubble radius is R and its growth rate is R. If the physical properties of the 
surrounding melt are constant, then the equations of mass and momentum are solved exactly 
by radial velocity and pressure fields: 

where u is the velocity vector, 8, the unit vector in the radial direction, r the distance from 
the center of the bubble, p the pressure, and p the melt density. The presence of a temperature 
gradient results in spatial variation of the viscosity and surface tension, which, in addition to 
the buoyancy force, cause the bubble to migrate. For the intumescent problem we can safely 
assume that the Reynolds number of the translation caused by these forces, Re = pU(2R) / p, 
where U is velocity and p is melt viscosity, is very small. Assuming also that the translation 
resulting from these forces is much smaller than the expansion velocity, the bubble will retain 
a spherical shape throughout its growth. 

The effects of gravity and a surface tension gradient on the motion of spheres are well known 
[8, 91, but the force due to the viscosity gradient requires further explanation. For variable 
viscosity, the Navier-Stokes (NS) equation is 

where the superscript T indicates the transpose. The gradient of melt viscosity can be written 
as V p  = VT(Bp/BT), where the variation of viscosity with temperature is estimated by the 
standard WLF equation for polymer melts [l 11. For a bubble whose thermal conductivity is 
much smaller than that of the surrounding melt, the temperature field is approximated by 



where G = ezG is the local temperature gradient and the angle 6' is measured from the +z- 
axis. Note that a discussion of this temperature field can be found later in this paper in the Heat 
Transfer Submodel section. 

The velocity and pressure fields due to the viscosity gradient, ul ( r ,  0) andpl (T,  B), are assumed 
to be perturbations added to the radial fields (1). Subtracting the radial solution from the NS 
equation and making the assumptions that Re << 1, U << R, and R(d In p/dz) << 1 results in 
the following analytical expressions for velocity and pressure: 

We can now determine the drag force on the bubble arising from the pressure, the deviatoric 
(non-isotropic) normal stress, and the shear stress [lo]: 

Substituting expressions (4) and (5) into equation (6), the total drag force is calculated to be 

The terminal velocity is obtained by equating this force to the force on a translating sphere in 
Stokes flow [a], 

where K is the ratio of sphere viscosity to fluid viscosity. Since even a trace amount of surface- 
active contamination will eliminate convection in the bubble interior, we take K + co, and the 
translation velocity due to the viscosity gradient becomes 

Velocities due to gravity and to the surface tension gradient are simply added to this quantity. 

The flow field in the fluid surrounding a single bubble is given by the sum of the radial ex- 
pansion field and the flow field for a sphere traveling with velocity U. If we can make the 
assumption that the distance between bubble centers is much larger than their radii, then a 
reasonable approximation for the total flow field for multiple bubbles is a simple summation 
of individual flow fields. In this field the bubbles experience forces induced by other bubbles, 
which tend to push them apart. For the intumescent problem, a condition of no flux across the 
lower boundary of the sample can be obtained using image bubbles. Figure 2 shows the flow 



FIGURE 2: Streamlines along plane of symmetry for four bubbles and their images. 

field resulting from four coplanar expanding bubbles and their images. 

The assumption of large bubble spacing compared to radius holds for early development of 
intumescence, but breaks down at later times when large bubbles are separated by thin layers 
of melt. The results for this model will therefore be most accurate during the early stages 
as the pyrolysis front moves through the material. The swelling of the intumescent surface 
is determined by the sum of forces from the expanding and migrating bubbles, which move 
the locations of points on the initially flat upper surface in time. Bursting at the surface is 
currently prohibited in this model. If a bubble tries to break the upper surface, the location 
of surface points is adjusted to retain the bubble within the sample. Coalescence is included 
by replacing two overlapping bubbles by a single bubble whose volume equals the sum of the 
merged bubbles, centered at the bubbles' center of mass. 

GROWTH RATE SUBMODEL 

In the intumescent material, the growth rate of bubbles depends on the chemistry of the de- 
composition of the blowing agent and on the physical properties of the gas and surrounding 
melt. When the local temperature has risen sufficiently to trigger decomposition of the blow- 
ing agent, the concentration of gas in the polymeric melt begins to rise. Diffusion of gas into 
nearby nucleation sites provided by impurities in the melt causes the bubbles to begin expand- 
ing. Initially, bubble growth is opposed by the surface tension of the melt. In a typical viscous 
liquid, the growth rate at later stages is controlled by liquid inertia and viscosity, by a com- 



FIGURE 3: Bubble radius vs. time according to the Epstein and Plesset expression. This 
plot illustrates the effect on growth rate of changes in diffusion coefficient D, gas solubil- 
ity S', and ratio of initial supersaturation pressure to minimum critical pressure Po/Pc. Pa- 
rameter values for the plots from fastest growing to slowest growing are ( D ,  s'; Po/Pc) = 

1,4),  ( l op9 ,  1,2),  (10-lo, 1; 4) ,  (10W9, 0.1,4) respectively, where D is expressed in units 
of m2/sec). 

bination of inertial and thermal effects, and, finally, by the transport of heat and mass alone. 
In the intumescent melt, however, viscous resistance to growth is expected to dominate until 
crosslinking and char formation causes the melt to solidify. The growth rate is also affected by 
depletion of the blowing agent, which leads to eventual decline in the gas concentration in the 
vicinity of the bubble. 

As an initial, simplified approach for including bubble growth effects in the three-dimensional 
model, bubble growth at a specific nucleation site begins when the temperature exceeds a spec- 
ified critical temperature. The growth rate is given by a simple calculation performed for an 
oversaturated liquid-gas solution by Epstein and Plesset [12]. The analysis assumes that the 
dissolved gas concentration satisfies a spherically symmetric diffusion equation. Convection 
from bubble expansion is neglected, the initial concentration is assumed constant, and the con- 
centration at the bubble interface equals that for a saturated solution. The resulting expression 
for the change in radius with time is 

where D is the diffusion coefficient, S' the gas solubility, Po the initial supersaturation pressure, 
and PC the minimum critical pressure for bubble inflation. Bubble radius as a function of time 
for some typical parameter values is shown in Figure 3. Gent and Tompkins 1131 have verified 
that this expression is valid for the growth of bubbles in elastomers, and it has been used to 
establish that diffusion from small bubbles to large bubbles in a structural foam is unimportant 
except for very thin bubble walls and low internal bubble pressures. [14] 



A more realistic calculation of bubble growth must include viscous resistance to bubble ex- 
pansion, reaction chemistry, and response of local physical parameters and chemistry to the 
temperature. An approach that includes variations in the concentration of dissolved gas in 
the liquid with radius and time is described by Street et al. [15] and Amon and Denson [16]. 
These models consider a solitary bubble expanding in a spherical cell containing a specific 
amount of liquid. Solidification effects are incorporated through variations of viscosity with 
time. Current efforts to improve the bubble growth calculations in the intumescent model in- 
volve modification of this approach to represent the intumescent environment more accurately. 
In particular, initial increases in gas concentration due to chemical reactions will be related to 
local temperature through an Arrhenius expression. 

HEAT TRANSFER SUBMODEL 

Upon exposure to the heat flux from a fire, the temperature within the intumescent sample rises, 
triggering gasification reactions at locations progressively farther from the upper surface. In 
the absence of bubbles, the temperature field is determined by solving a one-dimensional heat 
transfer equation: 

subject to a heat flux applied at the upper surface. Initially the entire sample is at room tem- 
perature. Initial and boundary conditions for this problem are: 

lim T ( z ,  t )  = To 
z+-m 

Here cu is the thermal diffusivity of the melt, k the thermal conductivity of the melt, Q the 
applied heat flux, and z, the location of the upper surface in reference to the lower surface 
located at z  = 0. Assuming that thermal parameters and the applied heat flux are constant, the 
solution to this simple problem is 

The progression of the intumescent front in response to this temperature profile, with the heat 
transfer effects from the bubbles themselves left out, is illustrated in Figure 4. Note that, 
although some swelling has occurred, the size and density of bubbles are not sufficient to 
increase the volume of the sample by a large amount. 

Now consider the effects of gas bubbles. We know from the literature that two important 
factors that slow the transport of heat through intumescent materials are the endothermicity of 



FIGURE 4: Development of bubbles with time as a steady heat flux of 40 kW/m2 is applied to 
the upper surface of a rectangular slab with dimensions (in meters) of 0.1 x 0.1 x 0.01. Bubble 
nucleation sites have been randomly located throughout the central region with dimensions 
0.06 x 0.06 x 0.01. The view is taken through the side of the material, which is visualized as 
transparent, with bubbles shown as opaque. 

the gasification reaction and the insulating properties of the final char. The approach we take 
is to consider the heat transfer in the vicinity of the solitary bubble of Figure 1, with thermal 
conductivity much lower in the interior than in the exterior, and with an endothermal heat 
flux due to gasification reactions applied at the bubble surface. In tmth, decomposition of the 
blowing agent occurs throughout the melted polymer, depending on the local temperature. The 
application of the heat of reaction to the bubble surface rather than distributed through the melt 
simplifies the problem sufficiently to enable an approximate analytic solution. 

The temperature field in the presence of the solitary bubble can be obtained by summing the 
field in its absence, T l ( z ,  t ) ,  as given by (15), with a local field T2(r,  t )  that satisfies the ap- 
propriate energy equation and enables the total field to match the temperature and heat flux to 
those of the interior at the bubble wall. A convective term due to bubble expansion is included 
in the equation for T2: 



Since the thermal conductivity of the gas within the bubble is much lower than that of the melt, 
the total heat flux to the bubble surface must equal the heat flux due to the endothermal reaction 
q" to a first approximation. So the boundary condition for T2 is 

where G(t)  is the gradient of TI at the bubble location zb: 

Assuming that the bubble radius is much smaller than the thickness of the melt, T2 must also 
satisfy T2(r, 0) = 0 and T2(r, t )  i 0 as r + oo. 
The effects of the time-dependent boundary r = R(t) are absorbed into the energy equation 
by changing variables from (r, 8 ,  t )  to ( ( ( T ,  t ) ,  8 ,  t ) ,  where < = r/R(t) .  Time t is nondimen- 
sionalized by a diffusion time L2/a, where L represents a distance of interest in the melt (the 
distance from the center of the bubble to the melt surface, for example, or the distance to a 
nearby bubble). The equation to be solved can now be written as 

subject to 

Tz(<,O)=o ; lim T2(<, r) = 0 ; 
S+m 

(21) 

where V is now in terms of ((, 8) and r is the nondimensional time. 

Again, for practical reasons we seek a simple analytic solution for the single bubble. First we 
note that for the intumescent problem, where either bubble radius or growth rate is very small, 
R R / ~  <( 1 for all times, and we can safely neglect the convective terms. In other words, 
the time scale for thermal diffusion is much shorter than the time scale for bubble growth. 
A numerical solution of the diffusion equation gives results that are well approximated by a 
quasi-steady harmonic solution, 

This is a sum of a dipole that represents the thermal conductivity difference and a sink that 
represents the endothermal reaction. The total temperature fields for a bubble in a uniform 
positive background temperature gradient showing the separate effects of small thermal con- 
ductivity of the bubble and endothermicity are displayed in Figure 5. Here the temperature 
within the bubble is a function of z only, and matches the exterior solution at the surface. Note 



FIGURE 5: Temperature contours for a bubble in a uniform positive background temperature 
gradient with a low thermal conductivity compared with the surrounding melt (left) and with 
an endothermal reaction taking place on its surface (right). The bubble surface is located at the 
discontinuities of the contours, and temperature increases as the shading darkens. 

that the temperature below the bubble is reduced in both cases, as we would anticipate. 

In this analysis, we have made the assumption that q is steady. The heat flux from the en- 
dothermal chemical reaction will, however, vary with local temperature and with the amount 
of unreacted material remaining. The question of whether this time dependence is adequately 
represented by setting q" to ql'(t) in the quasi-steady solution (22) has not yet been addressed. 

For multiple bubbles whose separation is much larger than their radii, the total temperature field 
can be obtained by adding the solution of the energy equation for the melt alone to the sum 
of fields from individual bubbles responding to local conditions. The rapid distortion of the 
geometry of the melt by the growing bubbles must be taken into account in these calculations. 
One approach to this complicated geometry is to introduce a Lagrangian coordinate system, 
which allows us to solve the heat transfer problem in the original rectangular geometry using 
finite differences. The evolution in time of a set of expanding bubbles arranged in three planes 
within the sample is shown in Figure 6. Note that the base of the intumescent material is cooled 
beneath the bubbles, due to both thermal conductivity effects and to endothermal reactions. 

Plans for improving the heat transfer model include a treatment of chemistry that links the 
production of gases in the bubble growth submodel with the effects of the endothermal heat of 
reaction on temperature. 

THE FULL MODEL 

The submodels of hydrodynamics, bubble growth, and heat transfer are coupled as the model 
moves forward in time. Initial setup defines the locations of bubble nucleation sites and of 
node points on a rectangular grid and sets all points at room temperature. At each time step the 
temperature, temperature gradient, and material properties are determined for each bubble. If 



FIGURE 6: Time development of a sample heated from above containing 38 bubbles arranged 
in three horizontal planes. Bubble thermal conductivity is much smaller than that of the melt, 
and each bubble acts as a heat sink due to endothermal chemical reactions. Temperature in- 
creases as the shading darkens. Note the cooler region (lighter gray) beneath the bubbles. 

the critical temperature has been exceeded at a bubble site, its growth rate is set according to 
radius and time. A Runge-Kutta procedure increments the positions of bubbles and nodes, and 
the flow field and temperature field are incremented according to the new information. 

CONCLUSIONS 

The complex nature of intumescent behavior requires a modeling approach that combines phys- 
ical and chemical principles for more complete understanding of the mechanisms involved. By 
combining approximate solutions of mass, momentum, and energy equations on the scale of 
an individual bubble, the three-dimensional model presented here has demonstrated swelling 
and cooling of the protected surface, in qualitative agreement with observations. The model 
includes endothermal chemical reactions, which reduce the temperature at the protected sub- 
strate during gasification, and the low thermal conductivity of the bubbles, which reduces heat 
transport for the final swollen char. The growth rate of bubbles due to diffusion of gases is crit- 
ical to swelling and heat transport, which are also affected by the migration of bubbles toward 
regions of higher temperature due to gradients in viscosity and surface tension. 

This model is designed for easy incorporation of more detailed submodels as our understanding 
improves. The addition of phenomena such as char solidification, the effects of viscosity on 
coalescence and bursting, non-Newtonian fluid effects, and the dependence of gas concentra- 
tion and heat flux on local temperature and eventual depletion of the blowing agent, is expected 
to provide increasingly refined quantitative results for comparison with experiment. 
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