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A B S T R A C T  

A methodology for deriving design values for occupational safety in public buildings ba- 
sed on risk is presented together with an illustrative example. With knowledge of the 
design values and chosen characteristic values the corresponding partial coefficients are 
automaticallv defined. The characteristic values can be chosen as an uvver 80th or 95th - - 
percentile of each distribution. The derivation of the design values is performed using a 
FOSM (First Order Second Moment) method. The safety level of the building is expres- 
sed as a value of the reliability index ,f3. In the example case a target p-value is chosen to 
1.4 which is approximately equivalent to  a probability of failure of 8 % on condition that 
a fire has started. 

K E Y W O R D S :  fire, evacuation, partial coefficient, risk, reliability index, FOSM 

I N T R O D U C T I O N  

The fire safety regulations in several countries have during the last years undergone a 
change from being prescriptive to become more performance based. This means that 
the codes are telling what the objectives are but do not tell the designer how to solve 
the specific problems. Together with these new fire safety regulations several general 
principles or guidelines have been published or are to  be published [I], [2], [3]. These 
guidelines are describing how to solve separate problems in the design process dealing 
with things such as the descent of the smoke layer in a room, the spread of smoke to 
neighbouring compartments, time for detection of the fire etc. The link between the 
submodels in the total design system is not so clear. In the British draft guide [I] a model 
is presented, describing data transfer between design subsystems with the aid of a central 
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information bus, but much is still unclear regarding the practical use of the information 
bus. 

What is absent in these documents are guidelines regarding methods to quantify and 
verify the safety levels generated in a specific design procedure. In some documents the 
safety is linked to values defined as characteristic values and safety factors called partial 
coefficients. In others so called global safety factors are proposed. It seems that from the 
discussion about risk in fire safety design arises a new set of questions to be answered 
such as 

how do we evaluate risk? 
how do different evaluation methods affect the outcome? 
what is the link between risk analysis and design? 
how should we choose design parameters? 
what background data is missing? 
what safety factors should we use? 

etc. 
This paper will try to answer some of these questions in showing the link between one 

risk analysis method and the performance based design procedure. This will be done by 
deriving partial coefficients for a class of buildings (public buildings) and corresponding 
characteristic values for the relevant parameters. 

A general procedure outlining the methodology for deriving partial coefficients and 
other code parameters has been proposed in [4]: 

set limits on the range of scenarios for which the individual deterministic equation 
in the code will be applicable 
specify the deterministic functional relationships to be used as a basis for each design 
subprocedure 
characterize the major sources of uncertainty in models and input parameters 
select a suitable safety format - the number of partial coefficients and their position 
in the design equation 
select appropriate characteristic values to be used as fixed deterministic quantities 
in the code 
determine the magnitude of the partial coefficients to be used, together with the cor- 
responding characteristic values, to achieve the required reliability (by judgement, 
fitting, optimization etc). 

THE DESIGN PROBLEM 

The design problem can be formulated in terms of the limit state function G as 

G(X1,Xz , . . . ,  X,) = O .  

The parameters Xi are stochastic parameters describing the system, for example fire 
growth rate and response time of occupants. The goal is to  find a solution to this problem 
with the constraint that 



The design can be performed on different levels depending on the amount of informa- 
tion available 141, [5], 161. On level l the reliability method only employ one "characte- 
ristic" value for each uncertainty parameter. The values of these parameters are chosen so 
they will result in a specified reliability. The calculations in this paper will be performed 
on the level 2 using the mean and standard deviation of the uncertainty parameters. The 
actual form of the respective parameter distribution will therefore not be considered. A 
level 3 procedure uses the complete information about the parameter distribution as well 
as the joint probability functions. A method on a lower level can only be verified by a 
higher level method. "Characteristic" values and partial coefficients on level 1 will in this 
paper be derived using the method on level 2. 

Conceptually, the design problem is simple. Specify input data (deterministic and 
stochastic), choose a target reliability index $0 which connects the reliability to  the target 
probability of failure; and vary the design parameters to be determined until the chosen 
value of /3 has been obtained. The process automatically provides the design vector 
( x ~ , ~ : .  . . , x,.d); with x,,d by definition being equal to the product of a characteristic value 
xi,ch and a partial coefficient "i,: 

The problem is that the procedure requires specification of all input data. .A functional, 
deterministic relationship in a design guide must be valid for a whole class of buildings 
with e.g. varying geometry. In addition, a design guide cannot simply refer the engineer 
to a level 2 method; a more simple and transparent method is required. in normal cases 
a deterministic, level I design equation. The solution to the problem is to derive, using 
an optimization procedure, values of x, d and y, that fulfill two conditions: 

keep the average safety level constant for the whole class of buildings 
minimize the difference in the required and obtained safety levels, taken over all 
individual buildings. 

In other engineering disciplines the design value x, d is normally derived by a combi- 
nation of a partial coefficient -!, and some characteristic value x,,,h (50th, 80th or 95th 
percentile) from the relevant distribution. 

To be able to use this approach two criteria have to be met: 

the function G must be possible to define 
statistical information of the variables X ,  must exist. 

The first statement is in this paper met by deriving response surfaces for the relevant 
expressions such as for the available safe egress time. The second statement cannot 
be met without expert judgement as much statistical data is lacking. This limits the 
application to some extent. 

HOW IS RISK DEFINED? 

In this paper we define risk as the product of probability and consequence of the event. 
The risk is divided in two levels 



the probability that a fire has started 
the probability that life-threatened conditions will arise before the room is evacuated 
and at least one person is trapped inside. The society risk is a combination of 
probability and number of casualties and is usually described with F/N-curves [7] .  
In the present case we are only interested in the individual risk i.e. at least one 
casualty, PI, [51, 161 ,PI. 

The method used in this paper, deriving design values and partial coefficients, is the one 
known as the FOSM (First Order Second Moments) reliability index @ method. This 
method provides the reliability index P which can be translated to the probability of 
failure of the system. It also provides the design point at which the probability of failure 
is highest. Using the values at the design point will result in a solution having the safety 
level indicated by the reliability index /3. In references [7] and [9] a number of scenarios 
are investigated and design points evaluated. 

RELIABILITY INDEX p 

The safety level in a design process can be described by one parameter, the reliability 
index p. This index contains information about the margin of safety in the limit state 
function as well as the uncertainty of the parameters in the limit state function. An 
example of a limit state function calculating the margin M  = T - Q where T and Q 
are independent and having means and standard deviations. The parameter T can be 
interpreted as a strength variable and Q as a load variable. The system is successful if 
the margin is positive i.e. the strength is higher than the load. The mean and standard 
deviation of the margin can be described as 

p ~  = p ~  - p ~  and U M  = d u g  + u$ 

One reliability index pc is defined by Cornell [ lo ]  as 

PC = P M / ~ M  

If the parameters T and Q are normally distributed the margin M  will also be normally 
distributed. The parameter ( M  - ~ M ) / U M  is N ( 0 , l )  and the probability of failure, p f ,  
can then be calculated as 

P M  PM p f  = FM(0)  =a( - - )  = 1  - a ( - )  = @ ( - P C )  
OM "M 

( 4 )  

using standard statistical textbooks and handbooks. If parameters are non-normally 
distributed or the limit state function is non-linear the relationship in Eq. 4 will only be 
approximate. 

A better measure of reliability is the Hasofer-Linds index [8]. This is defined as 
the shortest distance to the failure surface when the parameters are standardized. This 
means that the origin of the system is transferred to the mean values and the variable 
distance is measured in standard deviations. Standardized parameters are calculated as 
X' = ( X  - p x ) / u x ,  see Figure 1 showing a two-dimensional case. 

If the limit state function is non-linear, if the distribution of the parameters are non- 
normal or if the parameters in the limit state function are correlated an iterative procedure 
has to be used in deriving the reliability index P. We thus face a minimization problem. 
The procedure will result in the design point, the @-value and an estimate of the corre- 
sponding probability of failure. 
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FIGURE 1: Reliability index P in the twodimensional case using a standardized space. 

CALCULATION SCENARIO 

The section provides the background for the numerical example in which the safety of 
people is examined. The escape time margin is used as the definition of safety. The limit 
state function is expressed as 

where 
S = time to reach critical conditions in the room 
Ms = model uncertainty 
D = detection time of the fire 
R = response and behaviour time of the occupants 
E = movement time out of the room. 

The time to reach critical conditions is derived using the CFAST model [ l l ] .  A set 
of combinations of floor area, room height and fire growth rate is used to calculate the 
time to critical conditions for each combination. With all the combinations and times 
a regression analysis was performed to get a metamodel predicting the time to critical 
conditions as a function of fire growth rate, a ,  floor area, A and room height, H. The fire 
is characterized as an at2-fire. The regression equation for time to critical conditions is 

The same procedure was made for the detection time using the Detact-t2 model [12], 
resulting in 

D = 5.36 . (y-0,478 . ~ 0 . 7  (7) 

The model uncertainty for the CFAST model was derived as N(1.35,O.l) [7]. The response 
and behaviour time is chosen to be a random variable with parameters presented in 
connection with the example, [13]. The movement time is calculated as 

where 
N is the number of occupants per square metre 
W is the door width 



F is the specific flow of occupants through the doorway. 

The parameters in the limit state function are all random variables except the door 
width and the specific flow constant. The door width is the design parameter in the 
procedure described later and the specific flow constant is set to 1 person/m.s. The values 
describing the random variables are presented later in connection with the example. 

DERIVING DESIGN VALUES FOR A CLASS OF BUILDINGS 

As stated before the designer does not want to calculate the reliability index but rather 
use design values resulting in a solution with a given safety level. Partial coefficients 
and characteristic values produce design values which he/she can use to  obtain the design 
parameter, in this example the exit door width. The design guide must cover a large group 
of buildings with varying conditions, in this example the floor area and room height. The 
design point then has to be derived using an optimization process covering the whole class 
of buildings [4]. 

The situation is the opposite from the one when the reliability index P is derived. 
Knowing the design values of the stochastic parameters and having determined the buil- 
ding floor area and room height, the door width is the wanted result, assuming that a 
specified P is achieved. The design values should be valid for the whole class of buildings 
with different floor areas and room heights. Suppose that the class of buildings is limited 
to buildings with floor areas between 1000 m2 and 1600 mZ and room heights between 3 
and 8 m. The objective is to  derive ad, MSd,  Rd and Nd SO that the difference in safety 
level is minimized over the calculated cases. The cases in this example are the buildings 
with the following room height and floor area combinations; (3, 1000); (5, 1000); (8, 1000); 
(3, 1600); (5, 1600); (8, 1600). This results in six cases. 

The purpose of the minimization is to find limit state functions, one for each building 
condition, such that the p values corresponding to these limit state functions are as close 
as possible to a given /?-value, PtaTet. The limit state functions are obtained by varying 
the values of a,  Ms,  R and N in Eq. 5 with S, D and E replaced by the expressions of (6), 
(7) and (8) i.e. 

The expression for the designed door width is, using design values x,,d or characteristic 
values ~ , , ~ h  and partial coefficients y,, 

The limit state function for the j th  case is then 



where H, and A, is room height and floor area of the building. 
The element in the vector y  = ( -yo ,  yh.ls, YE. - y N )  represents the ratio of the design 

values and some characteristic value for each parameter, e.g. -/, = a d / a C h .  The purpose 
of the procedure is to derive a vector y so that the expression 

is minimized where 

and A = { ( a ,  Ms ,  R, N ) ;  G , ( a ,  MSs, R ,  N )  5 0). 
The algorithm for deriving the vector y  can be written 

1. Set the first guess of y and characteristic values i.e. the vector of design values. 
2. Solve the six values of W. (9), using the information in step 1. 
3. Calculate the six reliability index P values. For a given set of limit state func- 

tions, the reliability index P,(y) for the building condition j is obtained by measu- 
ring the distances from the points located on the limit state function "closest to" 
( p a .  phis, p ~ ,  p N ) .  Here "closest to" is measured with respect to the standard devi- 
ations (a,, OM,, UR,  O N )  according to (11) .  This can be done by iterative methods. 

4. Calculate the sum of squares using the expression (10) .  
5. Use an optimization algorithm that calculates the vector of design values that mi- 

nimizes sum of squares of deviations. 
6. The vector resulting from this procedure is the vector of design values. The partial 

coefficients are easily derived knowing the characteristic values for each parameter. 

When expression (10)  is as small as possible, then for a given limit state function, G,, 
the point, 

is the point on the limit state function that is closest to ( p a ,  p ~ , ,  /LR;  p ~ ) .  It satisfies 

In general ( a j ,  Dls,,, Rj, iVj)  is not identical to 

although for j = 1, .  . . , 6 ,  (q, Ms.,, R,, A$) often are very close to  (ad,  Ms,d, Rdr Nd).  
The search for y that minimizes (10) can for example be performed by a simplex 

search method. Other methods for the minimization are however possible. 



OTHER OBJECTIVE FUNCTIONS 

In the examples we have used the objective function C;=,(Pj(y) -Ptap9et)2 to  be minimum. 
Such an objective function implies that the safety level over the calculated cases are close 
to the specified level ptaVet. Other objective functions can be considered and may under 
certain circumstances be better suited. For example minjE{l,...,q(pj(y) - Pta,,t)v (where 
( z ) ~  = x if z 2 0 but co if x < 0) and C,6=, wj(pj(y) - Pta,get)2 where wj are given 
weights, are other objective functions. The first of these two latter alternative objective 
functions implies that the worst safety level of the calculated cases is close to  the specified 
level PtaWe, The second objective function implies that buildings with heigher weights 
have safety level more close to  the specified level Ptarget 

In general there is a non-uniqueness in y of the minimization problem. In such a case 
a minimization of 
6 

f f d  - (Ms,d - Ms,j 2 

j=1 j=1 O M S  

where 6 is a factor specifying the relative importance of the two terms, will yield a solution 
close to the six points (a,, M s j ,  Rj, Nj), j = 1 , .  . . ,6 .  

APPLICATION TO A CLASS OF BUILDINGS 

In this section we illustrate the concepts described so far. The results of the optimization 
procedure will be presented and discussed for a certain class of buildings, described by 
the calculation scenario. 

Numerical values in the example 

As mentioned earlier, the class of buildings in our example are given by the following 
combinations of room height H (m) and area A (m2): (3, 1000), (5, 1000), (8, 1000), 
(3, 1600), ( 5 ,  1600), (8, 1600). These values correspond t o  quite large public buildings, 
e.g. different places of assembly. 

Further, since P is calculated with a level 2 method, the mean and variance for each 
random variable in the limit state equation have to be known. In [7], the distributions 
for all random variables are presented and motivated; here, in Table 1, we just indicate 
for the variables R and a their respective mean p and standard deviation o. We want to  
emphasize that these values should be treated merely as suggestions, and that they are 
appropriate for the actual case of dimensions. 

TABLE 1. Mean and standard deviation for the variables. 
Variable 

1.35 0.1 
100 80 



Note the large coefficient of variation for the variable R (behaviour and response time). 
Further, in [7], it has been shown, for the type of scenario in our example below, that the 
major contribution to the overall uncertainty comes from R. 

Res t r ic t ion  t o  t w o  r a n d o m  variables 

As a first step, we have kept a and R as random variables in the calculations, while the 
other variables are treated as (deterministic) constants, equal to their respective mean 
values. The results are presented in the subsection below. 

At an introductory stage, this may be a relevant approach. Firstly, the calculations 
will be faster; secondly, it is easy to  visualize the results in plots. Recall from the preceding 
subsection that that the random variable R is important. The treatment of the case with 
more than two random variables is discussed below. 

Resu l t s  f r o m  t h e  opt imizat ion 

Now, most numerical values which are needed in the algorithm have been presented. 
However, a value of Pt,,,t in Eq. 10 must also be specified. In the following calculations, 
PtaTet = 1.4 was used. This value is chosen according to judgement. The value corresponds 
to a probability of failure of approximately 8 % (cf. (4)) given that the fire has started. 

When optimization problems are to  be solved, the choice of the starting point is 
important. The function to be minimized may have a number of local minima. It  is 
therefore a good rule to compare the results obtained from different starting points. In 
our problem, a natural initial guess would be the expectations of the random variables, 
i.e. the point (pa,  pR) .  

In Figure 2, convergence for four different starting points is displayed. The starting 
point is indicated by a star while the coordinate marked by a ring corresponds to  the 
expectation of each random variable. From different starting points, the design point 
(ad, Rd) is reached; in this case: (0.053, 210). 

At the (overall) design point, the limit state function for each of the six design situa- 
tions is plotted. The required door width in that point for each specific building is also 
calculated and shown in the plot. Note that these curves are not fixed because of the 
iterative optimization procedure; in the figure, the last position of the curves is shown. 
To the right in each plot the numbers Wl , .  . . ,W6 are the door widths (m) corresponding 
to the different cases (nr 1: (3, 1000), nr 2: (5, 1000), . . . , nr 6: (8, 1600)). 

The final point for each of the six cases (cf. (12)) is marked by +. They appear near 
the design point and are hard to identify with the naked eye. 

We want to  point out that the design point obtained from the optimization is not 
situated a t  a distance corresponding to some P according to Hasofer-Lind. Recall that 
the calculations of Pj(r)  in Eq. 10 are performed in a standardized space (cf. (11)) and are 
the Hasofer-Lind indices. The "outer" optimization procedure (minimization of Eq. 10) 
on the other hand derives values in the original space. 



obi ob2 003 0b4 005 00s 0b7 008 009 dl 
alpha 

00-0b4 0b5 0'06 0b7 0b8 0b9 0 1 1  
alpha 

'0 001 002 003 0.04 005 006 007 008 009 01 
alpha 

001 002 003 004 005 005 007 008 009 01 
alpha 

FIGURE 2: Illustration of t,he iterations. Starting point: *; Expected value: o 

Final remarks 

Given the calculated design point, in the example (0.053,210), how should it be used? 
Values of the partial coeficients yo and y~ can now be obtained by calculating ad/aCh and 
Rd/Rchr where a,h and R,,, are characteristic values. To examplify we can choose a,h = p, 
and RCh = p~ which corresponds to the 50th  percentile for symmetric distributions. This 
yields = 0.053/0.03 = 1.06 and 7~ = 210/100 = 2.10. However if other characteristic 
values were chosen the corresponding value of each partial coefficient would be different. 
Using the design values in practice results in a safety level which is accepted i.e. meets 
up with the target reliability index. The design must of course be within the limits set 
out by the optimization work. 

The given example shows the applicability of the method. It also indicates the pos- 
sibility of extending the calculation to multivariate scenarios. Csing different values of 
PtaTet, calibration procedures can be performed to derive partial safety factors which can 
be used as a practical design tool. 

FURTHER RESEARCH 

Finally, we give some remarks regarding other design situations and discuss possible ex- 
tensions of the analysis. 



FIGURE 3: The result when we solve for W in G = 0 and plot W a s  a function of A. 
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We have also performed calculations with four basic variables. In such a case, it  goes 
without saying that visualizing the result will become more difficult. Another important 
point is that finding one well defined design point is usually difficult. For example, the 
solution of the elementary problem in R3 of finding the intersection between two planes 
may be a line; thus, it may happen that infinitely many points solve a problem. 

One possibility may be to force the design point towards the minimizing points of the 
separate design situations. This can be done by adding an extra term in the objective 
function, cf. Eq. 13. 

Flwr area A 

O t h e r  design s i tuat ions 

One can think of a case where we want to include some other design situations, e.g. smaller 
areas: A = 200, H = 3; A = 200, H = 5; A = 200, H = 8. In such a case, the indicated 
values of the expectations and variances of the random variables are not valid. Fkom a 
physical point of view, this is easily understood: the awareness time is shorter in a smaller 
room where the fire is more easy to detect than in larger places. 

Consider again the case with two random variables. If we fix some typical point 
(a,, R,), and choose some height H,, we can calculate W as a function of A by solving the 
limit state equation G = 0. For the example shown in Figure 3 we chose cu = 0.05 kW/s2, 
R = 200 s (values of the same order as the design point) and H = 3 m. 

To the left in the figure, we note the two asymptotes. To the right, the region contai- 
ning the areas in our example is magnified. For this choice of parameters, areas smaller 
than about 600 m2 correspond to negative values of the door width. 

We conclude that if the analysis is to  be performed for other design situations, the 
terms in the limit state equation will have to  be altered and the expectations and standard 



deviations must be assigned new values. An important and interesting question to be 
answered in a later publication is: how many subgroups (with different ranges of height 
and area) are needed to cover all public buildings? 

REFERENCES 

[I] Draft BS guide to the application of fire safety engineering principles to fire safety 
in buildings. BSI Standards Sept 1995. 

[2] Draft copy of Fire engineering guidelines, Version 5.0. Fire Code Reform Centre, 
Sydney Australia 1995. 

[3] Funktionsbestemte brandkrav og Teknisk vejledning for beregningsmaessig 
eftervisning. Nordic Committee for Construction Regulations, NKB Commit- 
tee and Work Reports 1994:07. (In Danish) 

[4] Thoft-Christensen, P., Baker, M. J., Structural Reliability Theory and Its Applica- 
tions. Springer-Verlag, Berlin 1982. 

[5] Madsen, H. O., Krenk, S., Lind, N. C., Methods of Structural Safety. Prentice-Hall, 
Englewood Cliffs 1986. 

[6] Ang, A. H-S., Tang, W.H., Probability concepts in Engineering Planning and 
Design, Volume 11, John Wiley & Sons 1984. 

[7] Magnusson, S. E., Frantzich, H., Harada, K., Fire Safety Design Based on Calcula- 
tions, Uncertainty Analysis and Safety verification. Report 3078, Department of Fire 
Safety Engineering, Lund University, Lund 1995. 

[8] Hasofer, A. M. and Lind, N. C., An Exact and Invariant First Order Reliability 
Format. Proc. ASCE, J. Eng. Mech. Div. 1974. 

[9] Magnusson, S. E., Frantzich, H., Karlsson, B., Sardqvist, S., Determination of Safety 
Factors in Design Based on Performance. 4th International Symposium on Fire Sa- 
fety Science, pp 937 - 948. Gaithersburg 1994. 

[lo] Cornell, C. A., A Probability-Based Structural Code. ACI-Journ., Vol. 66, 1969. 

[ll] Bukowski, R. W., Peacock, R. D., Jones, W. W., Forney, C. L., Technical Reference 
Guide for the HAZARD I Fire Hazard Assessment Method. NIST, Gaithersburg 
1989. 

[12] Evans, D. D., Stroup, D. W., Methods of Calculating the Response Time of Heat 
and Smoke Detectors Installed Below Large Unobstructed Ceilings. NBSIR 85-3167, 
National Bureau of Standards, Gaithersburg 1985. 

[13] Frantzich, H., A model for performsnce-based design of escape routes. Report 1011, 
Department of Fire Safety Engineering, Lund University, Lund 1994. 




