
Analysis of Fire and Non-fire Signatures for Discriminating Fire Detection JAMES A. MILKE and THOMAS J. McAVOY

University of Maryland 
College Park, MD, USA 

ABSTRACT 

The characteristics of an improved fire detector which promptly reacts to smoke while 
discriminating between airborne signatures from fire and non-fire sources can be identified 
by considering signature patterns of each group of sources. Discrimination is accomplished 
by comparing signature response patterns from fire and environmental sources collected in 
small- and large-scale tests. Airborne signatures are produced in the tests from a variety of 
conditions: flaming, pyrolyzing and heated samples, and nuisance sources, such as aerosols, 
household products and cooked food. The signatures are described in terms of light 
obscuration, temperature, CO, CO,, O2 concentrations and signals from metal oxide sensors. 
An expert system was developed by a neural network and a multivariate statistical method to 
distinguish between f r e  and non-fire sources. In addition, the presence of a flaming or non- 
flaming fire can be identified despite the interjection of signatures fiom nuisance sources 
which could mask the fire signatures. 
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INTRODUCTION 

Prompt fire detection is the primary objective of automatic fire detection. The time to 
detection is a function of the sensitivity of the detector. However, a highly sensitive detector 
may provide a high frequency of unnecessary alarms because contemporary smoke detectors 
cannot discriminate between fire and non-fire sources of smoke and odors. Data from U.S. 
fire incidents during the 1980's indicates that 95% of all alarms from smoke detectors were 
unnecessary [I]. One solution proposed by Thuillard for minimizing unnecessary alarms 
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without sacrificing prompt activation involves using intelligence along with combinations of 
current sensor technology [2]. 

An interdisciplinary team from the Departments of Fire Protection Engineering and 
Chemical Engineering at the University of Maryland has conducted research to determine the 
characteristics of a sensitive, discriminating detector. The fue protection engineering team 
concentrated on selecting the fire and non-fire sources and characterizing the signatures from 
each source. The chemical engineering team applied analytical methods such as neural 
networks and multivariate statistical methods to investigate the signature and sensor response 
patterns and provide the discrimination capability between the flaming fire, non-flaming fire 
and non-fire sources. This effort has been conducted in three phases. 

SMALL-SCALE EXPERIMENTAL PROGRAM 

Initially, small-scale tests are conducted to characterize the signatures from f ~ e  and non-fire 
sources [3]. The experiments are designed to be conceptually similar to those by Okayama 
[4], with modifications incorporated to provide a greater range of measurements for 
describing the signature. 

The small-scale experimental apparatus is a simplified tunnel with the airborne products of 
the sources introduced at a hood located at the inlet. Relatively elementary measurements 
are collected to provide a rudimentary view of the signatures. Measurements include 
temperature at the inlet and outlet of the apparatus. At the center of the apparatus, light 
obscuration, gas species concentrations (CO, C02 and 02)  and presence of any oxidizable 
gas are measured. The presence of oxidizable gases is measured by a Taguchi metal oxide 
sensor. Sources of the smoke or odor are placed under a hood at the inlet end of the 
apparatus. A variety of fuels and non-fire (nuisance) sources are selected to be representative 
of a residential environment. Airborne products are generated from a wide range of 
conditions: samples with flaming and pyrolyzing combustion, heated samples and aerosols. 

An elementary expert system formulated from a manual review of the data is able to 
successfully classify 28 of 3 1 sources. The rules of the expert system are: 

CO, concentration exceeds 1500 ppm only for flaming fires 
Peak CO concentration exceeds 28 ppm and Taguchi detector response less than 6V is 
acquired only for pyrolyzing solids. 
All other combinations are acquired from nuisance sources. 

An ellipsoidal neural network is applied to the small-scale data, using data from two-thirds of 
the tests for training and the remainder for testing [5,6]. An improved classification rate is 
obtained, accurately classifying all sources except one smoldering source (which is 
improperly classified as a flaming source). 

The level of success attained from the small-scale experimental program confirms the 
feasibility of the concept presented by Okayama. However, the success of the expert system 



and neural network only relates to the limited range of fuel sources investigated and the 
small-scale test apparatus. 

LARGE-SCALE EXPERIMENTAL PROGRAM 

In the second and third phases, large-scale experiments are conducted to determine whether 
the trends identified in the small-scale experimental effort are also applicable in large-scale 
environments. The large-scale experiments are conceptually similar to the small-scale 
experiments where signatures from a wide variety of fue and nuisance sources are 
monitored, with the sensor response patterns explored. In the second phase, either fire or 
non-fire sources are introduced alone. In contrast, in the third phase mixed sources including 
both fire and non-fire sources are provided simultaneously. 

The large-scale experiments are conducted in a 3.6 x 3.6 m room with a height of 2.4 m [7- 
91. The room is unconditioned, with the temperature and humidity dictated by atmospheric 
conditions. Measurements include temperature, mass loss of the fire sources, CO, CO, and 
0, concentrations, light obscuration and the voltage output from two metal oxide sensors 
(Taguchi models 822 and 880). In addition, two commercial smoke detectors (one 
photoelectric and one ionization) are located on the ceiling, at the center of the room. A 
diagram of the room, including the relative locations of the sensors, is provided as Figure 1. 
A detailed description of the instrumentation is provided elsewhere [7,9]. 

FIGURE 1 Diagram of Test Room 

1. Load cell and fire source 2. Photocell 
3. Thermocouple tree 4. Helium-neon laser 
5. 4.75 mm copper sampling tube 6. Ionization smoke detector 
7. Photoelectric smoke detector 8. Taguchi 822 
9. Taguchi 880 



The Taguchi 822 and 880 metal oxide sensors are sensitive to the presence of oxidizable 
gases and environmental odors respectively. Mass loss measurements are used to estimate 
the yield fractions of the signatures from the fire sources. Yields of the non-f~e sources are 
estimated based on the quantity of material introduced. Because the tests are conducted in an 
unconditioned space, data is collected for at least two minutes prior to introducing any source 
in order to document variations in ambient conditions. 

Single Source Experiments 

The variety of sources used in the second phase to generate conditions within the room are 
summarized in Table 1 [7,8]. The sources are intended to be representative of fire and 
nuisance sources in residential environments. The 87 tests involved introducing 34 flaming 
sources, 16 smoldering sources and 37 nuisance sources. In general, the flaming and 
smoldering f ~ e s  were relatively small, i.e. the mass loss measured from flaming fires ranged 
from 0.008 gls for polystyrene to 1.99 gls for paper. Typically, the mass loss was on the 
order of 0.2 gls. 

TABLE 1 Test Sources 

The method of generating the airborne signatures varied for each of the categories of sources. 
A detailed description of the methods and is provided by Hagen [7]. Nuisance sources were 
generated by methods considered to be typical, e.g. toast was overcooked in a household 
toaster and aerosol sprays were continuously sprayed while randomly walking around the 
room. 

Measurements describing the mass loss and signatures of the sources are documented by 
Hagen [7]. The signature data is reviewed for the purpose of identifying patterns associated 
with the categories of sources. General trends are noted from a manual review of the 
maximum values recorded for each sensor leading to the development of another elementary 

Environmental Sources 

propane, aerosols (disinfectant, 
furniture polish, cooking spray, hair 
spray), nail polish remover, ammonia- 
based window cleaner, bleach, water 
mist, boiling water, toast, cigarette 
smoke, coffee 

Heated Fuels 

' Boiling only 
Pyrolyzing only 

Liquid 
heptane, 
1 -propanol, 
methanol, 
toluene, 
vegetable oil1 

Solid 
paper, cotton, 
polystyrene, 
pine, cardboard, 
cheesecloth, 
toast2 

Gas 
propane 



expert system similar to that developed for the data from the small-scale tests. This expert 
system provides insight into the patterns present in the experiments. 

A multivariate statistical analysis is applied to the maximum values recorded for each sensor 
during each test to identify the nature of the source instead of a neural network. Given the 
limited number of sensors, the same level of classification can be obtained with a less 
complex method than a neural network. The type of statistical analysis, a principal 
component analysis (PCA), makes use of the maximum values measured by each sensor for 
each test. The data are arranged in a data matrix, X [8,10-121. PCA determines the linear 
combinations of the maxima that are capable of explaining most of the variations in the 
measurements. Specifically, the PCA approach seeks to maximize: 

with the constraint of pTpl = 1 

p, is a matrix of coefficients, referred to as the principal components. As expressed, the 
solution of equation (1) yields the most important direction, p,, of the maximum variation of 
the data. Equation (1) is then re-expressed to determine the second most important direction, 
p,, etc. The number of coefficients selected for the PCA approach is based upon using the 
least number of principal components which provide sufficiently accurate predictions. For 
this application, an accuracy of 75-80 percent was judged acceptable. 

The predictions of the data are provide by a product of the principal components matrix, P, 
with a score matrix, T, as presented in equation (2). 

The column vectors in the P and T matrices are required to be orthogonal, i.e.: 

The score matrix, T, is determined by: 

Consequently, a linear combination of scores, t, , and coefficients, p, , are used to reconstruct 
the raw sensor measurements, as expressed in equation (4) for three principal components. 



Measurements from the following six sensors used in the tests are applied to develop the 
PCA model: CO, CO,, two Taguchi sensors (T88O and T822), temperature and light 
obscuration. The data for each sensor is scaled to zero mean and unit variance. The data 
collected from each sensor prior to the introduction of the source is used to establish normal, 
background conditions for that test. Characterizing ambient conditions was especially 
important given the unconditioned nature of the test room. Three PCA components explain 
approximately 76% of the variability in the ambient data (collected two minutes prior to the 
introduction of any source). Consequently, three components are used to classify the 
sources. 

The squared difference between the raw sensor values and the reconstructed values is called 
the squared prediction error (SPE). The expression for the SPE with three principal 
components is: 

SPE = (xi * tlpl + t2p2 * t3p3) 2 

Both the scores, t, , and the SPE reflect all of the sensor measurements because both the 
scores and the SPE involve data compression as well as synthesis. The SPE is used to 
identify the existence of an abnormal situation, with its confidence limit set at 99.5%. Where 
a set of measurements exceed the SPE outside of the established limit in three successive 
scans (with a scan rate of 2 sec. for all measurements), the identified conditions are 
considered to be "abnormal". The SPE successfully identifies conditions generated in all 87 
tests as differing from normal conditions. 

Following identification of abnormal conditions, the PCA is applied to classify the nature of 
the source. The scores (t, ) are used to distinguish the type of source, using the following 
rules: 

if t, >5, then the source is a flaming fire 
if -8<t, <O, then the source is a smoldering fire 
otherwise the source is a nuisance source. 

The results of applying the above rules are summarized in Table 2 for the test data. All of 
the flaming sources are properly classified, with smoldering sources classified properly in 
88% of the tests. Nuisance and ambient sources are classified properly in 73% of the tests by 
the PCA evaluation of the sensor data. 27% of the nuisance source cases are incorrectly 
identified as smoldering sources and hence represent false alarms. In contrast, at least one of 
the commercial detectors respond to 97% of the flaming fires (one is missed) and 25% of the 
non-flaming fires. The commercial detectors also respond to 11% of the nuisance sources as 
false alarms. 

In addition to the improved classification rate, the time for detection of the signatures from 
fire sources is significantly less with the measurements included and the PCA-based 
intelligence than that for either of the commercial detectors. The time required for detection 
of flaming fires is reduced by an average of 45 s (representing a decrease of 57%), with the 
detection time for the PCA-based evaluation of the data being 6 to 244 s less than that for the 



first responding commercial detector. The decrease in detection time was greater for the non- 
flaming fires, having an average reduction of 245 s and a range of 182 to 332 s. 

TABLE 2 Classification of Test Sources 

Mixed Source Experiments 

The variety of sources used in the third phase to generate conditions from combinations of 
sources within the room are summarized in Table 3 [9]. The set of sources selected 
represent a sample of the range of sources used in the second phase. A set of baseline tests 
are conducted using each of the sources alone. The methods of introduction for the fire and 
non-fire sources is similar to that used in the second phase, with a detailed description of 
each method provided by Hopkins [9]. In general, the combinations are produced by 
recording ambient conditions for two minutes, followed by the introduction of the nuisance 
source for 90 s throughout the room. Except for the case with boiling water which is 
continued along with the fire source, the nuisance source is discontinued and the fire source 
initiated. 

TABLE 3 Combinations of Fire and Non-Fire Sources 



As with the previous phase involving single sources, the mass loss rate for the fue sources is 
relatively modest, e.g. an average mass loss rate for the heptane fues was 0.3 g/s. The 
aerosol and window cleaner are introduced by continuously engaging the button on the 
aerosol can or the dispenser of the window cleaner. Water is evaporated at an approximate 
rate of 15 mVs and a hamburger (nominal mass of 100 g) is cooked on a hotplate. 

The history of the ratio of CO and C02 concentrations for each of the tests with heptane is 
presented as Figure 2. The curves for the combination sources have been shifted such that 
zero time is associated with ignition of the heptane, following the 90 s introduction of the 
nuisance source. As indicated in the figure, the difference in the ratio for the case with the 
flaming heptane alone and the cases with the flaming heptane and the additional sources is 
relatively modest. The greatest value of the ratio is obtained for the aerosol spray, which 
contained an assortment of hydrocarbons. The average CO/C02 ratio for the entire duration 
of the test for the other fire sources with the nuisance sources is presented in Table 4. 

FIGURE 2 COICO, Ratio for Heptane and Combination Sources Including Heptane 
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As indicated in the table, an elementary expert system can be proposed based only on the 
CO/C02 ratio to distinguish between flaming fire and non-flaming fire sources, given the 
limited data available. Support for this system is based on the observation that each of the 
fire sources appears to have a characteristic CO/C02 ratio, as is confirmed in the literature 
for a wider range of hels and burning modes [13]. The range of the CO/C02 ratio for all of 
the combinations involving heptane and the flaming paper fires is 0.01 to 0.14, while the 
ratio for the pyrolyzing cotton is significantly greater at 0.23 to 0.49. 



TABLE 4 Average CO/C02 Ratio for Fire and Nuisance Source Combinations 

However, the CO/C02 ratio for the variety of combinations involving hamburger ranged 
from 0.20 to 0.30. Consequently, an expert system based only on the CO/CO, ratio will 
yield unnecessary alarms for the combination sources with hamburger. As a result, 
discrimination of the non-flaming and nuisance sources requires the use of additional 
sensors. The average and maximum values of the signals received from the metal oxide 
sensors are not easily categorized for the variety of multiple sources. After the period of 
introduction of the nuisance source, the two metal oxide sensors responded differently to the 
combined signature. The response of one sensor approached that of the heptane alone, while 
the other appeared to reach an average value of response for heptane alone and the nuisance 
source alone. These differences are attributable to the inherent characteristics of each sensor. 
However, the difficulty with these different sensors is that a simplistic method of 
discrimination suggested in the second phase using only threshold values is not appropriate. 
Consequently, a method of discrimination is being investigated which considers transient 
data (rather than just maximum values) to overcome the tendency of the maximum value 
algorithm to be easily tricked by the non-fire sources. 

SUMMARY 

As a result of the experimental effort, an early fire detector consisting of an array of six 
sensors appears feasible, with discrimination provided by a neural network or multivariate 
statistical analysis of the sensor responses. The PCA-based evaluation of the sensor data 
described has the ability to respond more quickly as compared to currently available 
commercial detectors. Additional research is necessary to characterize the signatures from 
scenarios involving additional combination sources which can mask fire signatures or cause 
unnecessary alarms. In addition, the merits of a more comprehensive characterization of the 
signatures of fire and non-fire sources through the use of additional sensors or the use of 
transient data should be investigated. This analysis should improve the discrimination ability 
between flaming fire, non-flaming fire and nuisance sources. 
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