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ABSTRACT 

A numerical method is presented to determine the thermal conductivity of homogeneous 
insulation material using boundary temperature measurements. In this inverse analysis the 
direct problem consists of non-linear partial differential equation that is semidiscretized vla the 
variational form of the heat conduction problem. The inverse problem is reduced to minimization 
of a regularized functional of residuals solved by numerical gradient methods. Tikhonov and 
mesh coarsing regularizations are used. This method is known as the Regularized Output Least 
Squares Method (RLS). The accuracy of the predicted results is examined from an illustrated 
1-D case of a fire protected steel plate. Transient test temperature of the steel plate is 
simulated. Noise of randomly varying amplitude is added to the simulated temperature. Results 
show that good estimations on the thermal conductivity can be obtained without measuring 
temperature inside the insulation material. Comparisons with the accuracy of technique used in 
methods NT FIRE 021 and Pr ENV YYY5-4 of fire protected steel structures are presented. 
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NOMENCLATURE 

C capacitance matrix (J rn-' K-I) N, i:th interpolation (shape) function 
C,: elements of the capacitance matrix ( J ~ - ' K - ' )  N'(x )  vector of element shape functions 
c specific heat (J kg.' K-I) N,,: derivative of interpolation function i 
f heat flux (force) vector (W m-') q heat flux (Wm-') 
h convection coefficient (W m-? K-' j r source term ( ~ m ~ ' )  
K conductance matrix ((W K-I) T vector of nodal temperatures ( K )  
I' element length (m) T' vector of element nodal temperatures 
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T,"'"himulated steel temperature 
T , " ~  FE solution of steel temperature 
t time (s) 
v test function 
.\ , x spatial coordinate (m)  
.Y spatial coordinate (m)  
a regularization parameter 
6 ,  Kronecker symbol 

/1 thcrn~al conducr~vity (\V I T )  ! K ' i 
. , conducti\ity ol'\tccl and protection 

F denhity ( h z  nY') 
o Stefan-Boltcmann con\tant. 

5.67 x 10 " I ~ - ' K  ' 
R. R' global and element \elution domann 

FE. FEM Finitc Element Method 
ODE Ordinary Differential Equat~on 
I-D. 2-D one and two d~mensional space 

INTRODUCTION 

To date various methods have been developed for analysis of the inverse heat conduction 
problem involving the determination of thermal conductivity from measured temperatures 
inside the material [I-101. Usually the inverse solution is based on the ~nininiization of the 
differences between measured and calculated temperatures in a least squares sense iI-9I. This 
method is called the Output Least Squares Method (OLS). Existing methods of i11cer.e 
analysis [I-4, 8-10] require multiple spatial temperature measurements inside the material. 
Many thermocoi~ples should be used to obtain accurate results in such methods. More 
thermocouples do demand more cost and time. The computational experiments h a ~ e  sliown 
that the accuracy of reconstruction of thermal conductivity depends critically upon the location 
of thermocouple [ lo] .  When only boundary measuremenls are performed, the material does 
not need to be drilled for the mounting of thermocouples to measure internal temperatures. and 
the errors due to the location errors of thermocouples are avoided. To date only a few studies 
have studied the inverse determination of thermal conductivity from boundary measurements 
15-71, Kohn and Vogelius 161 determined thermal conductivity from statlc boundary 
measurements with temperature non-dependent therrnal conductivity. Huang and co-workers 
[5] applied the conjugate gradient method of minimization using two thermocouples located 
on the boundary surfaces. Lin and Cheng 171 investigated the hybrid Laplace tl-ansform/control 
volume technique in determining temperature-dependent thermal conductivity of a 
homogeneous material from boundary temperature measurements. 

Methods suggested for use in connection with fire testing have been reviewed by Lundqvist et 
al. (81. Dhima [9] has used OLS with finite difference discretization for the determination of 
thermal properties of fire protections using plate type of test specimens. Within the field of fire 
science testing methods have been developed based on one differential equation for fire 
protections of steel structures [ l I ,  15, 161. 

A common feature of inverse problems is the irl.stc~hilit\', that is, small changes in the data may 
give rise to large changes in the solution. Small finite dimensional problems are typically stable. 
however, as the discretization is refined. the number of variables increases and the instability of 
the original problem increases. Therefore regularization is needed. Two regularization methods. 
mesh coarsing and Tikhonov-regularization, have been adopted in order to get a stabilized so- 
lution. The available a priori known physical constraints on the parameters are taken into ac- 
count in the minimization. 



The ailn of thi\ study i \  to rnvestigatc the fea\ihrlltq of finite clciiicnr Icclinlcl~~c collihined 111t1i 

regularized output lea\[ \quare\ method I I I  dctermin~ng tcmpcrati1rc-dcpc1~i1~11t rlicrinal 
conductivity of n holnogeneou\ i n u l a t ~ o n  111;itcri;il f1.0111 bo~rlid;lry ~ C I ~ I ~ C ~ ; I I L I I ~ C  I I I C ; I \ I I ~ C I I ~ ~ I I ~ \ .  

Thermal conditct i~i t)  I \  approxi~nated n\ piece-wiw linear fnnct~cui\ of terilpei.ature. Tile 
unknown values of thermal conductivify at different ten1peratures ;ire I'ound hq mrniml/iiig a 
constrained and  regularized functional. The functional co i i \~ \ t \  of the .;Lini (11' the \illlare\ of 
residual norm of the errors (data - model) plu\ the \quare of the  norm of rhe \ecoritl dcri \ i i~lvc\  
of the properties with respect to the ternperat~~re. An  appropriate hnlancc hetwcen the ncecl to 
describe the measurements well and the need to ach~evc a \table \olut~on I \  reachctl 13) I'rnding 
an optimal regularization parameter. Both Newton ancl conjugate gradient inctl:oct\ have bccrl 
useci in the minimization. The hlorozo\ discrepancy principle I \  ir\eci to find ,I rea\onuble 
value for the regularization parameter. 

T o  investigate the ;Iccuracy of the present Inberse method in e\tirnat~on of thermal conductivity 
from boundar-y temperature measurement\ a simulated I-D case example of a fire protected 
steel sheet is investigated. The effects of the \patial discret~zation of the finite elc~nents  and 
temperature measurement noise to the accuracy of the invenc solutiori are studied. 
Comparisons with the standard differential equation method used for fire protected \tee\ 
structul-es in NT FIRE 02 I 1 1  51 and PI- ENV YYY5-3 I 161 are made. 

FORMULATION OF THE DIRECT PROB1,EM (HEAT CONDUCTION PIZOBIdEI\l) 

The basic Idea is to solve the temperature field 7'(.r, I )  in a given material resion. The field equa- 
tion 

is the diffusion equation with r(r,.r.T) as an arbitrary source term. I i m e  dcrlvatives are indicated 
by superimposed dots ( d  T I  d  I = T The Fouricr heat conduction constitutive relation is as- 

~ u m e d .  This equations 1s complemented with the appropriate initial-boundary conditions to get a 
well-posed problem. The boundary conditions may be a Dirichlet type or Neuinann type normal 
heat flux q,, = h ( T ) ( T -  T _ ) + o  E ( T ~  - T i )  with convection and radiation parts. The bound- 

ary terms as also the source terms rf present will he included into the nodal flux vector of the 
discretized heat conduction equation. 

Using the standard finite element semidiscretization [I21 one obtains the variational form of 
the problem ( I ) as 

with the temperature field approximated by T ' ( . r , r )  =p.,( . , )T3(r) .  where the test and the basis 
functions N , ( ( )  are the same (Galerkin formulation). In the case of i -D for a linear element 



we have N, (<) = ( I  - <) I 2  andN,((j = c I + 5) 1 2 ,  where 2 = i i I '  1s thc loc;tl clcmcrir coo~.(I~- 
nate. 

The semi-discretizatioi? of the heat conduction equation ( 2 )  produce\ the non-linear in~tial 
value problem 

where T(t)  is the global Lector of the unknown remperatures. Equation ( 3 )  i j  a set of 1 1  .r 1- 
non-linear ordinary differential equations. Notice [hat the right hand in the equation ( 2 )  corre- 
sponds to the nodal flux vector f (r .T) ,  which contains the boundary terms. Equation ( 3 )  is to 
be complemented with appropriate initial conditions. Natural boundary conditions are already 
included in the variational form (2). The essential bound;~ry conditions ase taken into account 
during the solution process of the initial value problem. The global matrices and vectors are 
assembled using standard FE-assembling technique\. In I-D caw the followin,o matrices: the 
element conductance matrix 

the element capacitance matrix 

and the element liodal flux vectol 

are obtained. The element matrices and vectors are integrated numerically using Gauss- 
Legendre integration scheme. The element matrices and vector!; depend on the unknown tern- 
perature. In the present arlalysis the explicit forward Euler time integration scheme has been 
used. The Gauss-Legendre integration of Eq. 5 leads to consistent c;ll?acitance matrix. where 
the non-diagonal terms C,', ( i  # , j )  are non-zero. Here Newton-Cotes integration formula 

where the nodal points ale used as integration points and the weights of the integl-ation are cal- 

culated as w, = hr,iV,r1.r, has been used in order to get a diagonal capacitance matrix. 

FORMULATION OF THE INVERSE HEAT CONDUCTION PROB1,ER.I ([PIC'?) 

Consider determination of temperature dependent thermal properrles in 311 initial v;llue problem 
( 3 )  using measured temperature. Unknown thermal conductivity 1s discretized with respect to 



the ternperature us~ng piece-n~se lineal- hasla functions. Vector a= 
Ii(T)=[/1(7;) . . .  A ( 7 ; )  , /1(7;+,) . . .  A(T,,)] contains nodal valucs of the unknown thcrnial conduc- 

tivity at temperature interval [7;,~,,]. where 7; and T,, are the niini~nol and tile max~mal valucs 
of temperature in solution domain. A realistic initial value 1s given for a.  Ucing the t-c~,ylrltr,-i:c~tl 
olrtpui lerr,sr . S ( ~ I I O ~ P . Y  111~t11otl  (RLS) 1131 a i \  solved from the ~ninimization pl.ohlcm. 

( 0  + a  1 with ~rcspect to a. ( (2  

where vector T1'."(Z;X:r) = N ( S ) T ( t )  is the solution of the direct initial value problem (31. 
Vector T""!" contains the input data: the real measured temperatures or simulat~on of them. 
~uclidean norms are calculaled in the temperature measurement points .I ,  at temperature cam- 

pling time t ,  as li,f.(\:t)lj2 = x x l , f ( . ~ , : t , ) i  
1 J 

Since the inverse problem is ill-pos'tl, i.e. small variations in the temperature meaaurernents 
cause large scatter in the inversion results, i t  has to be r-rg~rlirr-ir~il. In RLS method one weks a 
minimum for the functional (6) where a(> 0) is a small regularization parameter and differen- 
tial operator L = I ,  tl a I d  T or d'a I tl T ' .  Parameter a controls how much weight is given 

to the residual norm I I T " " , ~  (Z; 2; r )  - T"'"" ( .~ , t ) l l  - enforcing the consistency relative to the norm 

//L ci /  enforcing stability of the solution. The problem ,is the appropriate choice of the parame- 

ter a so that we can distinguish the real signal from the measurement noise. Perhaps clearest 
rule to choose the regularization parameter is Morozov ~ ~ . Y C ~ - ~ ~ I I I I L . J  / ~ r i t z c i / ~ l e  [ lo ,  131 where 
the residual norm is set equal to upper bound 

I ,ll;lx 

where 6' is measure of noise during time 6 ' = d 1 ' i l i  and d is the amplitude of noise at 
l l  

certain time and R is a coefficient of value 1.6 - 1.7 

NUMERICAL EXPERIMENTS 

Basic Data of the Studied Example 

To assess the accuracy of the present numerical algorithm in predicting the unknown thermal 
conduclivity, I-dimensional case of an insulated steel plate is considered (Fig. I). Following 
material parameters have been used: density of steel p, =7850 kg/m7, specific heat of steel 
c, =540 J kg-' K - I .  density of fire protection p =220 kg/rn7, specific heat of fire protection 
c,,= 1000 J k g ~ '  K-I. The thickness of the steel plate is assumed to be (1% = 0.0041 In and the 



thickness of the fire protection is tii, = 0.02 In. As the thermal conductivity 01' thc \tee1 a value 

= 50 ~ n 1 . l  K ~ '  has been applied. 

The present example investigates the inve1.s~ problem where the exact function o f  the thermal 
conductivity of the fire protection is following 

\vhere A,,= 0.025 1 W ~ n ~ '  K - I .  T, = 41 1 K. ,,,= 2.404 and T is tempe~.ature of the firc protec- 

tion. 

. . 
1- 

X 

FIGURE 1. Insulated steel plate with fire protection divided into two elements 

Calculation of Fictitious Test Data 

A simulated numerical approximation of exact solution has been obtained by solving the direct 
problem by finite element program ABAQUS Version 5.4 1131 by using the \,slues given 
above and the known thermal conductivity defined in Eq. (8). The solution domain was di- 
vided into 13 one dimensional 2-noded diffusive heat transfer link elements, element type 
DCID2, with three elements in the steel part with element length I"  =0.001367 m and I0 ele- 
ments in the insulation part with element length I '  = 0.002 m. In all the first order elements ot 
ABAQUS the internal energy storage term associated with specific heat was integrated a: the 
nodes. 

The boundary condition at x=O has been assumed to be adiabatic, i.e. c/ = 0. The temperature at 
the boundary of the fire protection .Y = d \  + tli, has been assumed to follow the standard 

IS0  834 temperature given in Fig. 2. The initial temperature 7;, was assumed to be 20 "C. 



Time (min) 

FIGURE 2. Boundary temperature and ABAQUS solution of the steel temperature 

Simulated measured temperature data of the steel u\ed as data was calculated froin equation 

7;"'"" ( t ,  ) = T,"" (1, ) + k,  6 T 

t, = i A t  ,,, 

where q P q R A ( t )  is the temperature of the steel plate calculated with ABAQUS and 6 7' repre- 

sents an amplitude of simulated temperature measurement noise and k, is a peneratcd random 
variable. The values of k ,  lies in the range from - 1  to 1 .  The data sampling time-btcp hiis been 
At,, , ,  = 120 s .  

Assumptions of the Inverse Computation 

In the inverse computation the steel plate was divided into a one lumped element with constant 
temperature field. This causes that the steel is only acting by specific heat. The fire protection 
was divided into several elements of equal length. Inverse solution of thermal conductivity was 
obtained by minimizing the equation 

where T,"'"" is the steel temperature obtained as a solution of direct initial vuluc problem (3) 
and T,'""" is the simulated temperature of the steel which was computed frorn Eq. (9) .  The 
"unknown" thermal conductivity of the fire protection A, , (T)  was divided into a certain num- 

ber of sub-intervals [T,,T,+,] of length 50  "C. It was assumed that we know the exact value of 



the thernial conductiv~ty at 20 "C L I  vle usually do in the pr ;~c t~cc .  The iinhno~\11 veciol 
2'' = [ ~ , , ( 5 0 )  .A,,( 100)  .A,, (150) ...I consiatcd of. the values of' thermal conduct lv~r~  at rellipcr,l- 

tures 50 "C ... 900 "C. Positiveness of thermal conductiv~ty / i ! , ( T )  > 0 was i~ \cd  al\o a\ reslric- 

tion to the admissible solution. As an initial value for each element of Lector t i '  at rhc \tart of. 
each iteration the known value of thermal conductivity at 20 "C \\as L I S C ~ .  

The Effect of Spatial Discretization to the Accuracy of Inverqe Solution 

The effect of the spatial discretization to the accuracy of the solill~on \va\ st~ldicd b) changing 
the number of elements in the fire protection used in the inverse solut~on fl-om one to \ e \ c n  
The value Sf = 1 " C  was used as an amplitude of simulated temperature measurement nolse In 
the Eq.(12) when calculating simulated measured data. 

It can be seen in Fig. 33 that the error between the real thermal conductivity and thermal con- 
ductivity obtained by inversion with one element at temperatures 50 "C- 350 "C I \  quite large. 
This error is due to the linear assumption and the fact that only one Gaussian integration point 
is used in the middle of the element. When temperature at the boundary of the insulation rise\ 
quite rapidly the temperature at the center of the insulation calculated w ~ t h  one element I \  

much higher than the correct one (see Fig. 6a). Due to this the inver\e solution is also incor- 
rect. 

TABLE 1.  Dependence of the relative error 
Err (%) of I o n  the number N' of elements 

Already with two elements the inverse solution is rather satisfactory (Fig. 3b).  The conver- 
gence of the inverse solution can be seen in Fig. 4a where the error of the thermal conductivity 
is plotted as a function of the number of elements N '  . Here the error of the thermal conduc- 
tivity in certain temperature interval [q, &]  = [20 "C ,  900 "c] has been computed using fol- 

lowing relative error measure: 

where the subscripts e.r and ex denote the estimated and exact values, respectively. The calcu- 
lated errors are also shown in Table I .  It can be seen that the inverse solution converges to the 



correct solution as the nurnber of elements is increased. This was observed also by Lin and 
Cheng in their inversion method where they increased the number of control volunies 171. 

Accuracy of Standard Methods of Fire Technology 

In the method NORDTEST NT FIRE 02 1 ( 151 and in the corresponding CEN 5tand;ird prENV 
YYY5-4 [ 161 of fire protection to steel structures thermal conductivity is calcuiated using in- 
verse solution of the differential equation derived by Wickstrom [ I 1  ] using the measured steel 
and gas temperatures. Thermal conductivity calculated using the method NT FIRE 02 IIprENV 
YYY5-4 is presented in Fig. 4b. Corresponding error is shown in Table 1 .  

Temperature CC) Temperature ( -C )  

FIGURE 3. Inverse solution of the thermal conductivity (line with squares) with a'i I-element 
b) two elements and compared to the exact thermal conductivity (solid line). 
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FIGURE 4. a) Convergence of the inverse solution of the thermal conductivity a h  a function 
of the number of elements, b) Inverse solution of the thermal conductivity (line with squares) 
by using the method NT FIRE 0211 prENV YYY5-4, ~neasurelnent error 6 ?' = I " C 



Effect of Noise in Temperature Data 

The effect of the noise in temperature data to the accuracy of the solution u a \  studied by 
changing the amplitude of the noise in the limits 6 7' = I "C ... I0 "C i n  the Eq. (12) when cal- 

culating simulated data. In the Table 2, the errol-s in the thermal conductivity obtained by in- 
version are presented. In the regularized case (KLS). Morozov discrepancy principle (7 )  has 
been applied as restraint when solving Eq. (10) keeping the residual constant 

l l ~ , ' " ' ( ~ : r , ) - ~ ' ~ " " ' ( r , ) l l ~  = R ri n'. where rl is the number of time steps. The non-regularized 

( a  = 0) case is also presented in Table 2. This corresponds the Output Least Squares Method 
(OLS). It can be seen that the increase of noise does not affect much the accuracy of the RLS 
method. Using OLS the in'zrease of noise causes large errors to the inverse solution. The le- 
sults are plotted in Fig.5a. 

TABLE 2. Average relative error Er (8) of 2 with different 
amplitudes of noise 6 T with (RI,S) and without (OLS) reg~~larization 

6 T 20-900 "C 20-900 "C 
("c) (RLS) (OLS) 
. -. -. . - -. .- . . . - -- 

1 1.73 6.5 1 
2 1.38 12.69 
5 2.45 36.56 

10 1.47 57.58 

Accuracy of Direct Solution Using Thermal Conductivity Computed by Inversion 

The convergence of the direct solution can be seen in Fig. 5b where the error of the calculated 
temperature field is plotted as a function of the number of elements. Here the error of the tem- 
perature field has been computed using following relative error Erl of solution in space L1 
and Er2 of solution in space L2 

8%' , I  

Erl = ~ T ~ ~ " ( ~ Y , , ~ , ) - T " " ( X , , ~ , ) ~ / T " ~ ~ ' ( X , . ~ ~ ) /  

where T"',' denotes the temperature in the ~nsulation computed with ABAQUS using 10 ele- 
ments and exact thermal conductivity. Temperature 7"""' is the direct solution using 1 ... 5 
elements and with thermal conductivity computed by inversion. The solution of temperature 
field T ( x , , t , )  has been calculated at the nodal points of grid of 10 elements. I t  can bee seen in 

Figure 6b that the direct solution is rather good already with two elements. 

The convergence of the finite element solution is shown to be dependent on the number of 
elements in following way I / T "  - T"."lli 5 C (N')-~, where Il., is energy norm. If this equa- 

tion is assumed to be valid also for the "norms" applied here the rate of thc convergence can 



be obtained as a slope of the error lines drawn in log-log scale in Fig. 5b. Numerical values of 
the slopes P are 1.80 in LI space line and 1.96 in L2 space line. These value5 are quite near 

the proven theoretical value 2 for linear heat conduction problems 1 1  21 . 

- Relatlve L1 norm 

0 5 '-. 
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I -+ 
1 5  --- 

0 0 2 0 4 0 6 
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b) 

FIGURE 5. a) Average relative error of 1 Er (5%) as a function of measurement noise ampli- 
tude 6 T , b) convergence of thc direct solution using conductivity conlputed by inversion. 
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FIGURE 6. Temperature in the fire protection calculated with the inverse solution of the con- 
ductivity (dashed line) compared to the ABAQUS solution with exact conductivity (solid line 
with squares). Solutions with a) I-element b) two elements at times 4 min, 6 min and 30 min. 

CONCLUSIONS 

A numerical method involving finite element method combined with regularized output least 
squares method in determining temperature-dependent thermal conductivity of a homogeneous 
insulation material from boundary temperature measurements is presented. As a numerical 
experiment insulated steel plate is considered. The effects of element discretization and noise 
in the temperature data to the accuracy of the inverse solution are studied. The temperature 
noise is simulated by stochastic values of different amplitude. It is shown that the thermal 



conductivity of the insulation can be computed by inversion in one dimensional c u e  wlth very 
good accuracy. Only temperature measurements at the boundnr~es: in steel and at thc surface of  
the insulation and the adiabatic flux boundary condition at steel surface are ~ ~ s e d .  I t  I shown 
that accuracy of the presented method is better than the accuracy of the standard mctliods of 
fire protected steel structures. It is also demonstrated that the solution of the temperature fleld 
computed with the thermal conductivity obtained by inversion conLerges towards the exact 
one. 

The  presented mathematical inversion method can be extended to two-dimensional cases using 
two dimensional elements or for cylindrical structures using axisymmetric elements. 
Extensions of the method to problems where both temperature dependent specific heat and 
thermal conductivity are unknown are also possible. 
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