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ABSTRACT

A numerical method is presented to determine the thermal conductivity of homogeneous
insulation material using boundary temperature measurements. In this inverse analysis the
direct problem consists of non-linear partial differential equation that is semidiscretized via the
variational form of the heat conduction problem. The inverse problem is reduced to minimization
of a regularized functional of residuals solved by numerical gradient methods. Tikhonov and
mesh coarsing regularizations are used. This method is known as the Regularized Output Least
Squares Method (RLS). The accuracy of the predicted results is examined from an illustrated
1-D case of a fire protected steel plate. Transient test temperature of the steel plate is
simulated. Noise of randomly varying amplitude is added to the simulated temperature. Results
show that good estimations on the thermal conductivity can be obtained without measuring
temperature inside the insulation material. Comparisons with the accuracy of technique used in
methods NT FIRE 021 and Pr ENV YYY5-4 of fire protected steel structures are presented.
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NOMENCLATURE
C capacitance matrix (J m2K") N;  i:th interpolation (shape) function
. . e 2y
C;; elements of the capacitance matrix (Jm~K h N*(x) vector of element shape functions
¢ specific heat J kg' K N, derivative of interpolation function i
f heat flux (force) vector (W m™) q heat flux (Wm™2)
. . . -2 -
h convection coefficient (W m~ K™) r source term (Wm™)
. 2 -l .
K conductance matrix (W m™~ K™") T vector of nodal temperatures (K)
¢ element length (m) T  vector of element nodal temperatures
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T simulated steel temperature thermal conductivity (W m' K™)

A

T,"*™ EE solution of steel temperature A, 4,  conductivity of steel and protection
t time (s) . o) density (kg m"‘)
v test .functlon' o Stefan-Boltzmann constant.
X.Xx spatial coordinate (m) 567 x 10° Wm>K"'
X Spat"l" coordinate (m) Q, Q°  global and element solution domain
o regularization parameter .
5 Krgonecker N nfbol FE, FEM Finite Element Method

i o R4 ODE Ordinary Differential Equation
€ emissivity 1-D, 2-D one and two dimensional space
INTRODUCTION

To date various methods have been developed for analysis of the inverse heat conduction
problem involving the determination of thermal conductivity from measured temperatures
inside the material [1-10]. Usually the inverse solution is based on the minimization of the
differences between measured and calculated temperatures in a least squares sense [1-9]. This
method is called the Output Least Squares Method (OLS). Existing methods of inverse
analysis [1-4, 8-10] require multiple spatial temperature measurements inside the material.
Many thermocouples should be used to obtain accurate results in such methods. More
thermocouples do demand more cost and time. The computational experiments have shown
that the accuracy of reconstruction of thermal conductivity depends critically upon the location
of thermocouple [10]. When only boundary measurements are performed, the material does
not need to be drilled for the mounting of thermocouples to measure internal temperatures, and
the errors due to the location errors of thermocouples are avoided. To date only a few studies
have studied the inverse determination of thermal conductivity from boundary measurements
[5-7]. Kohn and Vogelius [6] determined thermal conductivity from static boundary
measurements with temperature non-dependent thermal conductivity. Huang and co-workers
[5] applied the conjugate gradient method of minimization using two thermocouples located
on the boundary surfaces. Lin and Cheng [7] investigated the hybrid Laplace transform/control
volume technique in determining temperature-dependent thermal conductivity of a
homogeneous material from boundary temperature measurements.

Methods suggested for use in connection with fire testing have been reviewed by Lundqvist et
al. [8]. Dhima [9] has used OLS with finite difference discretization for the determination of
thermal properties of fire protections using plate type of test specimens. Within the field of fire
science testing methods have been developed based on one differential equation for fire
protections of steel structures [11, 15, 16].

A common feature of inverse problems is the instability, that is, small changes in the data may
give rise to large changes in the solution. Small finite dimensional problems are typically stable,
however, as the discretization is refined, the number of variables increases and the instability of
the original problem increases. Therefore regularization is needed. Two regularization methods,
mesh coarsing and Tikhonov-regularization, have been adopted in order to get a stabilized so-
lution. The available a priori known physical constraints on the parameters are taken into ac-
count in the minimization.
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The aim of this study is to investigate the feasibility of finite clement technique combined with
regularized output least squares method in determining temperature-dependent thermal
conductivity of a homogeneous insulation material from boundary temperature measurements.
Thermal conductivity is approximated as piece-wise lincar functions of temperature. The
unknown values of thermal conductivity at different temperatures are found by minimizing a
constrained and regularized functional. The functional consists of the sum of the squares of
residual norm of the errors (data - model) plus the square of the norm of the second derivatives
of the properties with respect to the temperature. An appropriate balance between the need to
describe the measurements well and the need to achieve a stable solution is reached by finding
an optimal regularization parameter. Both Newton and conjugate gradient methods have been
used in the minimization. The Morozov discrepancy principle is used to find a reasonable
value for the regularization parameter.

To investigate the accuracy of the present inverse method in estimation of thermal conductivity
from boundary temperature measurements a simulated 1-D case example of a fire protected
steel sheet is investigated. The effects of the spatial discretization of the finite elements and
temperature measurement noise to the accuracy of the inverse solution are studied.
Comparisons with the standard differential equation method used for fire protected steel
structures in NT FIRE 021 [15] and Pr ENV YYY5-4 [ 16] are made.

FORMULATION OF THE DIRECT PROBLEM (HEAT CONDUCTION PROBLEM)

The basic idea is to solve the temperature field 7(x.f) in a given material region. The field equa-
tion

pc T(En=V-(AVIG, r))+r(r,i,’1’) M

is the diffusion equation with r(t.x,T) as an arbitrary source term. Time derivatives are indicated
by superimposed dots (d T'/d t = T ). The Fourier heat conduction constitutive relation is as-
sumed. This equations is complemented with the appropriate initial-boundary conditions to get a
well-posed problem. The boundary conditions may be a Dirichlet type or Neumann type normal
heat flux g, =h(TT-T,)+0 € (T* -T2 with convection and radiation parts. The bound-
ary terms as also the source terms if present will be included into the nodal flux vector of the
discretized heat conduction equation.

Using the standard finite element semidiscretization [12] one obtains the variational form of
the problem (1) as

[pcTvdQ+ [AVT-VvdQ=[rvdQ- | §-iivdl 2)
Q Q Q A,
with the temperature field approximated by 7+ (x,r)=N*(x)T"(r), where the test and the basis

functions N,;(&) are the same (Galerkin formulation). In the case of 1-D for a linear element
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we have N(&)=(1-&)/2 andN,(E)=(1+&)/2, where E= /1" is the local clement coordi-
nate.

The semi-discretization of the heat conduction equation (2) produces the non-linear initial
value problem

Ct, T)YT(N = (1. T) =K. T)T(1), 1> 0 (3)
T(0) =T‘O, 1=0,

where T(t) is the global vector of the unknown temperatures. Equation (3) is a set of n x /-
non-linear ordinary differential equations. Notice that the right hand in the equation (2) corre-
sponds to the nodal flux vector f(r,T), which contains the boundary terms. Equation (3) is to
be complemented with appropriate initial conditions. Natural boundary conditions are already
included in the variational form (2). The essential boundary conditions are taken into account
during the solution process of the initial value problem. The global matrices and vectors are
assembled using standard FE-assembling techniques. In 1-D case the following matrices: the
element conductance matrix.

- . 2!
Kf = [ AT(0) VN, (x)- VN (x) (IQzl%Jl(T(f)) N, (N, &) dé “)
Q -1
the element capacitance matrix
I
i = [ A(T(x) «(T(x)) Ni(x) Nj(x) dQ=5fp(T(é‘nc'(T(é))N,<§>N,(§) dg &)
Q -

and the element nodal flux vector

‘fl:" = J’ q/_i Ni(x) d]—‘:-[qulvl(f)]
9 Q,nd O 78,09 Q°

are obtained. The element matrices and vectors are integrated numerically using Gauss-
Legendre integration scheme. The element matrices and vectors depend on the unknown tem-
perature. In the present analysis the explicit forward Euler time integration scheme has been
used. The Gauss-Legendre integration of Eq. 5 leads to consistent capacitance matrix, where
the non-diagonal terms C,-"j (i #j) are non-zero. Here Newton-Cotes integration formula
where the nodal points are used as integration points and the weights of the integration are cal-
!
culated as w; = _[ N;N.dx, has been used in order to get a diagonal capacitance matrix.
0

FORMULATION OF THE INVERSE HEAT CONDUCTION PROBLEM (IHCP)

Consider determination of temperature dependent thermal properties in an initial value problem
(3) using measured temperature. Unknown thermal conductivity is discretized with respect to
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the  temperature  using  piece-wise  linear  basis functions. Vector  a=
a(T) =[2,(T,)1(7:) MT,)-- A(Ty, )] contains nodal values of the unknown thermal conduc-
tivity at temperature interval [7,.7,,], where 7 and T,, are the minimal and the maximal values
of temperature in solution domain. A realistic initial value is given for a. Using the regularized
output least squares method (RLS) [13] a is solved from the minimization problem.

min,,»eo{||T"""4M (@ %)= T‘"""(.?.t)“2 +ofL ﬁ”z} with respect 1o a. (6)

where vector T’:EM(&;E;I)= N(X)T(1) is the solution of the direct initial value problem (3).
Vector T%™ contains the input data; the real measured temperatures or simulation of them.
Euclidean norms are calculated in the temperature measurement points v, al temperature sam-

pling time ¢, as |if()?;t)|i2 = ZZIf(x,-:tj )| .
i

Since the inverse problem is ill-posed, i.e. smail variations in the temperature measurements
cause large scatter in the inversion results, it has to be regularized. In RLS method one seeks a
minimum for the functional (6) where (> 0) is a small regularization parameter and differen-
tial operator L = I, da/d T or d*a/d T*. Parameter & controls how much weight is given

to the residual norm ”T’:EM(F(;)?;t)—T"""'(f,t)n enforcing the consistency relative to the norm
"L [1" enforcing stability of the solution. The problem s the appropriate choice of the parame-

ter o so that we can distinguish the real signal from the measurement noise. Perhaps clearest
rule to choose the regularization parameter is Morozov discrepancy principle [10, 13] where
the residual norm is set equal to upper bound

Tl <

max
. . N 2
where 87 is measure of noise during time § ~ = J‘
0
certain time and R is a coefficient of value 1.6 - 1.7.

9 | *dt and 9 is the amplitude of noise at

NUMERICAL EXPERIMENTS
Basic Data of the Studied Example

To assess the accuracy of the present numerical algorithm in predicting the unknown thermal
conductivity, 1-dimensional case of an insulated steel plate is considered (Fig. 1). Following
material parameters have been used; density of steel p, =7850 kg/m’, specific heat of steel

¢,=5401] kg! K", density of fire protection p=220 kg/mR, specific heat of fire protection
¢,=1000] kg" K. The thickness of the steel plate is assumed to be d = 0.004] m and the
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thickness of the fire protection is d, = 0.02 m. As the thermal conductivity of the stecl a value
A, =50 Wm™ K has been applied.

The present example investigates the inverse problem where the exact function of the thermal
conductivity of the fire protection is following

7\
/‘{],(T)=ﬂ,, ]+['—] ) (8)
T

where 4,=0.0251 W m' K, T,=411 K, p,=2404 and T is temperature of the fire protec-
tion.

d d,
Steel plate P )
| Protection
\ ‘/_ rotectio
T, =T, ¢—
Mo
Temperature » T; =T,
- =

approximation ==

X
FIGURE 1. Insulated steel plate with fire protection divided into two elements.

Calculation of Fictitious Test Data

A simulated numerical approximation of exact solution has been obtained by solving the direct
problem by finite element program ABAQUS Version 5.4 [14] by using the values given
above and the known thermal conductivity defined in Eq. (8). The solution domain was di-
vided into 13 one dimensional 2-noded diffusive heat transfer link elements, element type
DC1D2, with three elements in the steel part with element length /“ =0.001367 m and 10 ele-
ments in the insulation part with element length [ =0.002 m. In all the first order elements of
ABAQUS the internal energy storage term associated with specific heat was integrated at the
nodes.

The Boundary condition at x=0 has been assumed to be adiabatic, i.e. ¢ =0. The temperature at
the boundary of the fire protection x=d, +d, has been assumed to follow the standard
ISO 834 temperature given in Fig. 2. The initial temperature 7, was assumed to be 20 °C.
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FIGURE 2. Boundary temperature and ABAQUS solution of the steel temperature.

Simulated measured temperature data of the steel used as data was calculated from equation

7}‘[{”“(’[) — RAIiA(ti)_’_kl ST

9
t=iAt

col

where T*# (1) is the temperature of the steel plate calculated with ABAQUS and & T repre-
sents an amplitude of simulated temperature measurement noise and &; is a generated random
variable. The values of k; lies in the range from -1 to 1. The data sampling time-step has been

At ,=120s.

col

Assumptions of the Inverse Computation

In the inverse computation the steel plate was divided into a one lumped element with constant
temperature field. This causes that the steel is only acting by specific heat. The fire protection
was divided into several elements of equal length. Inverse solution of thermal conductivity was
obtained by minimizing the equation

2

} (10)

mmdeb{

where T® is the steel temperature obtained as a solution of direct initial value problem (3)
and T is the simulated temperature of the steel which was computed from Eq. (9). The
“unknown” thermal conductivity of the fire protection 4,(T) was divided into a certain num-

2
EFEM([—i;ti)_T;rhlm ([')" +o ”L a

ber of sub-intervals [7;,T,,,]of length 50 °C. It was assumed that we know the exact value of
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the thermal conductivity at 20 °C as we usually do in the practice. The unknown vector
al =[/1,,(50),/1,,(100)./1,,(]50)...] consisted of the values of thermal conductivity at tempera-
tures 50 °C...900 °C. Positiveness of thermal conductivity A,(T)> 0 was used also as restric-

tion to the admissible solution. As an initial value for each element of vector ' at the start of
each iteration the known value of thermal conductivity at 20 "C was used.

The Effect of Spatial Discretization to the Accuracy of Inverse Solution

The effect of the spatial discretization to the accuracy of the solution was studied by changing
the number of elements in the fire protection used in the inverse solution from one to seven.
The value 6T =1 ° C was used as an amplitude of simulated temperature measurement noise in
the Eq.(12) when calculating simulated measured data.

It can be seen in Fig. 3a that the error between the real thermal conductivity and thermal con-
ductivity obtained by inversion with one element at temperatures 50 °C- 350 °C is quite large.
This error is due to the linear assumption and the fact that only one Gaussian integration point
is used in the middle of the element. When temperature at the boundary of the insulation rises
quite rapidly the temperature at the center of the insulation calculated with one element is
much higher than the correct one (see Fig. 6a). Due to this the inverse solution is also incor-
rect.

TABLE 1. Dependence of the relative error
Err (%) of Aon the number N° of elements

N°® 20-900 °C

31.18
2.97
1.77
1.63
1.73
1.60

NT 021/prENV YYY5-4 77.98

N A WwN =

Already with two elements the inverse solution is rather satistactory (Fig. 3b). The conver-
gence of the inverse solution can be seen in Fig. 4a where the error of the thermal conductivity
is plotted as a function of the number of elements N“. Here the error of the thermal conduc-
tivity in certain temperature interval [T;,T,, ] = [20 “C, 900 "C] has been computed using fol-
lowing relative error measure:

TA, (T )= A, (T
Err(%) = 2 | o(T)= 2T dr an
TM_Ti T ly\(T)i

where the subscripts es and ex denote the estimated and exact values, respectively. The calcu-
lated errors are also shown in Table 1. It can be seen that the inverse solution converges to the
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correct solution as the number of elements is increased. This was observed also by Lin and
Cheng in their inversion method where they increased the number of control volumes|7].

Accuracy of Standard Methods of Fire Technology

In the method NORDTEST NT FIRE 021 [15] and in the corresponding CEN standard prENV
YYY5-4 [16] of fire protection to steel structures thermal conductivity is calculated using in-
verse solution of the differential equation derived by Wickstrom [11] using the measured steel
and gas temperatures. Thermal conductivity calculated using the method NT FIRE 021/prENV
YYY5-4 is presented in Fig. 4b. Corresponding error is shown in Table 1.
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FIGURE 3. Inverse solution of the thermal conductivity (line with squares) with a) I-element
b) two elements and compared to the exact thermal conductivity (solid line).
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FIGURE 4. a) Convergence of the inverse solution of the thermal conductivity as a function
of the number of elements, b) Inverse solution of the thermal conductivity (line with squares)
by using the method NT FIRE 021/ prENV YYY5-4, measurement errord 7 =1 °C
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Effect of Noise in Temperature Data

The effect of the noise in temperature data to the accuracy of the solution was studied by
changing the amplitude of the noise in the limits § T =1 °C... 10 °C in the Eq. (12) when cal-
culating simulated data. In the Table 2, the errors in the thermal conductivity obtained by in-
version are presented. In the regularized case (RLS), Morozov discrepancy principle (7) has
been applied as restraint when solving Eq. (10) keeping the residual constant
||7}""fM(ﬁ;t,)— T (1, )”' =R n 6T, where n is the number of time steps. The non-regularized
(ar=0) case is also presented in Table 2. This corresponds the Output Least Squares Method
(OLS). It can be seen that the increase of noise does not affect much the accuracy of the RLS
method. Using OLS the increase of noise causes large errors to the inverse solution. The re-
sults are plotted in Fig.5a.

TABLE 2. Average relative error Er (%) of A with different
amplitudes of noise d T with (RLS) and without (OLS) regularization

6T 20-900°C 20-900 °C
“C) (RLS) (OLS)
| 1.73 6.51

2 1.38 12.69

5 2.45 36.56

10 1.47 57.58

Accuracy of Direct Solution Using Thermal Conductivity Computed by Inversion

The convergence of the direct solution can be seen in Fig. 5b where the error of the calculated
temperature field is plotted as a function of the number of elements. Here the error of the tem-
perature field has been computed using following relative error Erl of solution in space LI
and Er2 of solution in space L2

N n
Ert =33 [T (1)) = T (et )| 1T (1)
iy
(12)

Erz:\/lei{TMA(Xi,I,)—T"""-M(x,,rj)}z /\/ii{TW(-"M,)}Z
o i

where T denotes the temperature in the insulation computed with ABAQUS using 10 ele-
ments and exact thermal conductivity. Temperature 7" is the direct solution using 1 ... 5
elements and with thermal conductivity computed by inversion. The solution of temperature
field T(x;,t;) has been calculated at the nodal points of grid of 10 elements. It can bee seen in

Figure 6b that the direct solution is rather good already with two elements.

The convergence of the finite element solution is shown to be dependent on the number of
elements in following way ‘T”“ - TF""M”F <C (N°)?, where ||| is energy norm. If this equa-

tion is assumed to be valid also for the "norms" applied here the rate of the convergence 8 can
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be obtained as a slope of the error lines drawn in log-log scale in Fig. 5Sb. Numerical values of
the slopes B are 1.80 in L1 space line and 1.96 in L2 space line. These values are quite near
the proven theoretical value 2 for linear heat conduction problems [ 12] .
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FIGURE 5. a) Average relative error of 1 Er (%) as a function of measurement noise ampli-
tude & T , b) convergence of the direct solution using conductivity computed by inversion.
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FIGURE 6. Temperature in the fire protection calculated with the inverse solution of the con-
ductivity (dashed line) compared to the ABAQUS solution with exact conductivity (solid line
with squares). Solutions with a) 1-element b) two elements at times 4 min, 6 min and 30 min.

CONCLUSIONS

A numerical method involving finite element method combined with regularized output least
squares method in determining temperature-dependent thermal conductivity of a homogeneous
insulation material from boundary temperature measurements is presented. As a numerical
experiment insulated steel plate is considered. The effects of element discretization and noise
in the temperature data to the accuracy of the inverse solution are studied. The temperature
noise is simulated by stochastic values of different amplitude. It is shown that the thermal
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conductivity of the insulation can be computed by inversion in one dimensional case with very
good accuracy. Only temperature measurements at the boundaries; in steel and at the surface of
the insulation and the adiabatic flux boundary condition at steel surface are used. It is shown
that accuracy of the presented method is better than the accuracy of the standard methods of
fire protected steel structures. It is also demonstrated that the solution of the temperature field
computed with the thermal conductivity obtained by inversion converges towards the exact
one.

The presented mathematical inversion method can be extended to two-dimensional cases using
two dimensional elements or for cylindrical structures using axisymmetric elements.
Extensions of the method to problems where both temperature dependent specific heat and
thermal conductivity are unknown are also possible.
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