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ABSTRACT 
 
Data on fire losses in Hotels and Motels collected by the National Fire Incident Reporting 
System in the USA between 1983-1995 are statistically analysed. It is shown, using as 
illustration the year 1988 data, that the non-zero fire losses closely follow a lognormal 
distribution. For the years 1983-1995 the deflated mean and coefficient of variation, as 
well as the percentage of zero-loss fires, have remained practically constant. 
 
A new technique for estimating high quantiles of the distribution, based on recent work in 
the Theory of Extreme Value Distributions, is presented and used to obtain the 99% 
quantile of the fire loss for the year 1988. The result matches closely the estimate 
obtained by linear interpolation, but an estimate based on the lognormal distribution 
parameters derived from the global data seriously underestimates the percentile. A table 
of the coefficients required to calculate high quantiles for the whole period (1983-1995) is 
given. 
 
KEY WORDS: Fire losses, hotels and motels, NFIRS data base, lognormal distribution, 
high quantile estimation, fire loss time variation. 
 
INTRODUCTION 
 
In 1977 Rogers published a paper [1] in which he studied the probability distribution of 
fire losses in the United Kingdom for various industrial occupancies. The purpose of the 
paper was to evaluate the effect of sprinkler protection on fire losses. The data he 
analysed were yearly values over the period 1966-1972. Only individual fires for which 
the total damage to structure and content was £10,000 or more were included. The 
methodology used was due to Ramachandran [2]. 
 
The purpose of the present paper is to revisit Rogers’ findings about the statistical 
properties of the data, using the far more extensive data available from the USA, as well 
as some more refined statistical techniques that have been recently developed. 
 
Rogers assumed that the fire loss was lognormally distributed. Although he claimed that, 
based on previous work, this was a “reasonable” assumption, he was not able to justify it 
on the basis of the data presented, because the data available to him represented “only a 
small percentage of the number of fires”, namely the upper tail, with the bulk of the 
distribution absent. Moreover, because of this restriction, one important estimate obtained 
by Rogers, namely the expected loss, is of particularly questionable accuracy. The data 
available to the authors and presented in this paper do cover the full range of losses 
(subject to some uncertainties, as discussed later in the paper). 
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Since the purpose of this paper is mainly to illustrate the proposed methodology, the 
analysis will concentrate on just one type of occupancy: Hotels and Motels. 
 
According to Rogers, there are two main parameters that have practical application in fire 
engineering: the average loss and the maximum property loss. 
 
Average losses can be used to estimate the probable reduction in loss per fire due to the 
installation of fire fighting equipment such as sprinklers. Indeed, such installations can be 
justified on economic grounds only if the total reduction in fire losses exceeds the total 
cost of installing and maintaining these systems. Thus, for various purposes, including 
broad planning of fire cover, it is necessary to estimate the total loss (or, equivalently, the 
average loss) for different occupancies and a variety of fire fighting equipment. An 
optimum fire cover would be one which would minimize the sum of total fire loss and fire 
fighting costs, subject to certain constraints such as risk to life. 
 
On the other hand, there is usually a maximum property loss that an individual owner 
(whether a private person or a corporation) and/or their insurers would be prepared to put 
up with. This allowable maximum loss depends on the probable consequential losses as 
well as on the assets of the owner (or even on the size of the insurance company in the 
case of a large building). However, the yearly maximum of the raw data is a highly 
variable measure. For example, for Hotels and Motels in USA over 1983-1995, the 
maximum of the maximum yearly loss was $5 million while the minimum of the 
maximum yearly loss was $1.5 million. In risk analysis, it is customary to specify the loss 
that is exceeded with a given fixed probability, e.g.1%. It is known as the 99% quantile of 
the distribution of losses and is far more stable than the maximum itself. Thus, for the 
same data, the maximum 99% quantile was $329,000 and the minimum $210,000.  
 
DESCRIPTION OF THE DATA 
 
The data used in this study is obtained from the National Fire Incident Reporting System 
of the USA (NFIRS).  The NFIRS database is maintained by the United States Fire 
Administration, Federal Emergency Management Agency and consists of systematic 
reports of fires under a uniform system contributed by many Fire Departments throughout 
the USA.  Each incident reported is coded systematically in maintaining the database. 
 
ANALYSIS OF A TYPICAL DATA SET 
 
The method of analysis will be illustrated on one particular data set, namely Hotels and 
Motels for the years 1983-1995. The analysis is carried separately for each year. A full 
analysis will be given for the year 1988, which should be typical of other years. 
 
The first task is to test whether the data are consistent with a lognormal distribution. We 
have from the outset a problem, since the probability of the value zero in a lognormal 
distribution is zero. In the data, however, there is a comparatively large proportion of 
zeroes. For 1988, the total number of fires listed was 3377 of which 943, or 27.9% had a 
zero fire loss. 
 
There were clearly two ways to deal with the problem. The first (and most obvious one) 
was to imagine that the zero values were actually distributed lognormally in the positive 
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neighbourhood of the origin. The second one was to just disregard the zero values and fit 
a lognormal distribution to the loss values greater than zero. The fitting was carried out 
using a quantile-quantile plot [3] of the logarithm to the base 10 of the non-zero fire loss 
against the quantiles of the standard normal distribution.  
 
The p-th quantile of a random variable X  is a number η such that the probability that X is 
less than η is equal to p. A normal quantile-quantile plot consists of a plot of the ordered 
values of the data versus the corresponding quantiles of a standard normal distribution. If 
the quantile-quantile plot is fairly linear, the data are reasonably normal. Linearily is 
conveniently measured by the correlation coefficient between the ordered data and the 
corresponding normal quantiles.  
 
Figure 1 shows the quantile-quantile plot when the zeroes are taken into account, while 
Fig. 2 shows the plot when the zeroes are ignored. It is quite clear that the second plot is a 
better fit. Numerically, this can be confirmed by calculating the correlation between the 
quantiles. For Fig. 1 the correlation is 0.984, while for Fig. 2 it is 0.994.  
 
It might have been thought that it is quite possible that there were many more fires with 
negligible losses than shown in the data, but they were not reported. This would suggest 
that the fit would be improved by increasing the proportion of zeroes in the data. This, 
however, is not the case. Increasing the number of zeroes actually decreases the 
correlation. For example, if the proportion of zeroes is increased to 50%, the correlation 
decreases to 0.976. From here on, the analysis will ignore the zero loss fires, and we will 
be content to quote the percentage of zero fires. 
 
The next task is to find the mean and standard deviation of the logarithm of loss. This can 
be obtained in two ways: 
 
1. By direct calculation of the mean and standard deviation of the logarithmic data. This 

yields a mean of 2.85 and a standard deviation of 1.022. 
2. By calculating the  coefficients of regression of the data quantiles on the quantiles of 

the standard normal distribution. A standard least-square regression without weights 
was performed. This yielded a mean of 2.86 and a standard deviation 1.014, a result 
not significantly different from the first calculation. 

 
As far as the mean of the non-zero fire losses is concerned, it can, of course, be easily 
calculated from the raw data. However, as pointed out in [4], this is an unreliable method 
that suffers from great variability. It is much better to calculate the mean Uµ  and 

standard deviation Uσ  of the logarithm U  (to the base 10) of the fire loss X , and then 
use the formula [4] 
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Fig. 1 - Lognormality of fire loss, including zeroes. 

 
Fig. 2 - Lognormality of fire loss, after deleting zeroes 
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VARIATION OF THE FIRE LOSS OVER TIME 
 
Table 1 illustrates the variation of the mean and standard deviation of the non-zero fire 
losses over the years 1983-1995. One clear feature of the table is that the number of fires 
has been steadily decreasing. 
 
However, in absolute terms, the mean fire loss is steadily increasing. But following the 
lead of Rogers [1] the means were deflated, using the Consumer Price Index published by 
the U.S. Department of Labor. The particular index used was for all urban consumers, 
U.S. city average, based on all items. The values used were for January of each year. 
 
Table 1: Fire loss variation with time 
Year No of 

fires 
Percentage of 
zero-loss fires 

Mean 
of log 

Deflated 
mean of  

log 

Standard 
deviation of 

log 

Deflated 
mean dollar 

loss 
1983 3005 25.32 2.78 2.78 1.01 9149 
1984 3336 25.87 2.77 2.76 1.00 7863 
1985 3505 26.90 2.81 2.77 1.00 8588 
1986 3361 25.83 2.85 2.80 1.01 9312 
1987 3317 27.40 2.87 2.82 1.00 9376 
1988 3377 27.92 2.85 2.78 1.02 9627 
1989 3251 29.44 2.86 2.77 1.02 9222 
1990 3200 27.75 2.89 2.77 1.01 8956 
1991 2982 27.77 2.90 2.77 1.01 8645 
1992 2894 25.74 2.95 2.80 1.05 11850 
1993 2721 26.39 2.91 2.75 1.02 8665 
1994 2563 25.83 2.97 2.80 0.99 8485 
1995 2362 23.71 3.03 2.84 0.99 9390 
 
The last column of Table 1 gives the deflated mean loss in (US) dollars calculated by 
using Eq. 1. There is no longer a discernible trend, either upwards or downwards. 
 
It is interesting to note that overall there is very little variation and no clearly discernible 
trend over time in all the measures reported in Table 1 during the thirteen year period 
covered, apart from the number of fires. Another point of interest is that the standard 
deviation of the logarithm of the loss ( which is approximately equal to the coefficient of 
variation of the losses) remained surprisingly constant throughout the period under 
consideration.  
 
ESTIMATION OF HIGH QUANTILES 
 
While the mean of non-zero fire losses is of great interest in estimating the social damage 
caused by fires, it is even more important for insurance purposes to be able to determine 
the high quantiles of the distribution of fire losses, e.g. the fire loss that will be exceeded 
with a probability of 1%. (See the discussion in Rogers' paper [1] p.16 and in 
Ramachandran's book [5] pp.186-188).  
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One might have thought that once a probability distribution has been globally fitted to the 
data set, it is possible to estimate the high quantiles from that distribution. This is 
unfortunately not the case. The reason is that the fitting of the  distribution involves two 
types of error: 
1. a modelling error, 
2. a sampling error, due to random variations in the data. 
Both errors tend to be different in the centre of the distribution and the tails. This can 
clearly be seen in Fig. 2, where the fitting in the centre of the distribution is much better 
than in the tails. The modelling error is particularly worrying when estimating high (or 
low) quantiles, because it is quite possible that the physical mechanisms that generate 
very high (or low) values of the variable are different from those that generate the central 
values. 
 
To avoid this problem, it is customary to estimate high quantiles from the upper tail of the 
data alone. 
 
Rogers' approach, using the work of Ramachandran [2], was a weighted least squares 
estimation with correlated errors based on extreme value theory. Since then, simpler 
methods, based on the pioneering work of Weissman [6] and Hasofer and Wang [7], have 
been evolved. A comprehensive statement, specially written for engineers, is given in 
Hasofer [8]. In this paper, an outline of the methodology, sufficient for the practising 
engineer, is given, dispensing with  theoretical proofs.  
 
Suppose the given sample has n elements. The first step in the estimation is to put the 
sample values in descending order:  nXXX ≥≥ ...21 . We then choose the k  largest 

values kXX ,...,1  and base the quantile estimation on them. When there is a large 
sample available, as in the case of fire losses, a simple rule of thumb is to choose 

nk 5.1= . (There are more sophisticated methods to choose k .  See [8] p.208 and the 
references therein).   
 
The next step is to determine the domain of attraction of the underlying distribution. The 
idea of a domain of attraction is based on the fact that the distribution of the maximum of 
a random sample, when suitably scaled, tends, with increasing size of sample, to one of 
three so-called “Extreme Value Distributions”. They are: 
 
1. Type I, also known as the Gumbel distribution, 
2. Type II, also known as the Cauchy distribution, 
3. Type III, whose mirror image is known as the Weibull distribution. 
 
  
Weissman has shown that the domain of attraction of a distribution determines the shape 
of its upper tail. Using that property, it is possible to obtain simple, but highly efficient 
formulae for the high quantiles of the distribution, based on the top k  values of the 
sample. 
 
Determination of the domain of attraction of the distribution is accomplished by 
calculating the test statistic 
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The value of W  is then tested against the upper and lower limits UW  and LW  given in  
Table 3 in the Appendix for values of k between 13 and 500. The table is an extract from 
[8] p 204. The same table is also available in Hasofer and Wang [7]. Values of UW  and 

LW  for intermediate values of k  can be calculated by interpolation. For values of k  

larger than 500 we can take 2/3/56.2/1 kkWL −=  and 2/3/56.2/1 kkWU += .  If 

W  lies between the two limits, it is concluded that the underlying distribution belongs to 
the Type I (“Gumbel”) domain of attraction. In that case, the estimator of the quantile q  
that is exceeded with probability ε  is given by 
 
  kXnkaq += )/ln( ε      (4) 
 
where  kXXa −=  and ln  is the natural logarithm (to the base e ). 
 
If, on the other hand, LWW < , we conclude that the underlying distribution is Type II 
(“Cauchy”). In that case, we carry out the tranformation 
 
  )(log10 ω−= ii XY      (5) 
 
for ki ,...,1= and an appropriate value of ω  (see below). The resulting transformed 
sample now belongs to the domain of attraction of the Type I distribution and the required 
quantile can be evaluated by using Eq. 4. 
 
( In the papers referred to, natural logarithms are used, but for the transformation step this 
makes no difference, and using logarithms to the base 10 makes it easier to compare the 
results with those based on the analysis above (Analysis of a typical data set).) 
 
The appropriate value of ω  is obtained by solving the equation 
 

  
k

YYW k
1),...,( 1 =      (6) 
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It is shown in Hasofer and Li [9] that when LWW <  this equation always has a unique 

solution. As stated above, the required quantile xq  of the original distribution can now be 

evaluated by calculating the corresponding quantile yq  of the tranformed  sample, using 
equation 
 
  ky Ynkaq += )/ln( ε      (7) 
 
where kYYa −=  and then obtaining the original quantile xq  by carrying out the 
inverse transformation to Eq. 5, namely 
 
  yq

xq 10+= ω .      (8) 
 
The case UWW >  corresponds to the case when the underlying distribution is in the 
domain of attraction of Type III. The Type III distribution has a finite upper bound and 
does not normally show up in situations where there no fixed upper bound within the 
range of interest of the variable being studied. This is clearly the case for fire losses. The 
mirror image of the Type III distribution, on the other hand, is extensively used to model 
load resistances, which are by their very nature non-negative and thus have a finite lower 
bound. As mentioned above, it is associated with the name of the celebrated Swedish 
engineer W.Weibull. 
 
APPLICATION TO THE TYPICAL DATA SET 
 
The method just described was applied to the data set discussed above in ‘Analysis of a 
typical data set’, namely Hotels and Motels for the year 1988. We use the undeflated 
figures. 
 
The analysis dealt with fires with non-zero losses, of which there were 2434. The value of 
k  chosen was 7524345.1 ≈ . The value of ω  calculated from the raw data was 
5.31×10-3. The corresponding values of LW  and UW  (obtained by interpolation from 
Table 3) were 10.64×10-3 and 18.45×10-3. The conclusion is that the sample belongs to the 
Type II domain of attraction.  
 
Solving Eq. 6) we find ω  = 142,911.6. Using that value, we find that for the transformed 
sample kYY ,...,1  the value of kY  is 5.348 and the value of a  is 0.2799. The value of the 

99% quantile for the transformed sample kYY ,...,1  is 5.663. Reverting to the X  values, 
we find that the 99% quantile is $317,519.  
 
This value can be compared with the value obtained directly by linear interpolation from 
the sample, namely $350,000, which is about 10% higher than the calculated value. 
However, we must remember that with this type of lognormal distribution the 99% 
quantile is expected to have a coefficient of variation of about 23%, so that the agreement 
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is quite satisfactory. (The coefficient of variation was obtained from a Monte Carlo 
simulation of the lognormal distribution.) 
 
On the other hand, if we calculate the 99% quantile from the mean and standard deviation 
of the lognormal distribution, namely 2.85 and 1.02, we find $170,408, which is far below 
the value derived from the sample. 
 
The calculations just carried out confirm the above statement that estimating high 
quantiles from a hypothesised global distribution, with parameters derived from the whole 
sample, can be severely misleading. 
 
On the other hand, the proposed asymptotic method is probably more reliable than the 
linear interpolation, as far as prediction of future extreme values are concerned. For a full 
discussion of this topic, see Boos [10]. 
 
Table 2 gives the values of kYa  , ,ω  and the 99% quantile for the period 1983 to 1995. 
The values are based on raw loss figures. Other  quantiles can be calculated from the first 
three values by using Eq. 7 and 8. 
 

Table 2: Values of  ω, a , Yk  and the 99% quantile for 1983-1995. 
Year ω a Yk 99% quantile ($) 
1983 -17,700 0.435 4.85 219,000 
1984 -158,000 0.196 5.35 210,000 
1985 -62,000 0.275 5.18 238,000 
1986 9,270 0.339 4.93 212,000 
1987 -61,300 0.330 5.13 262,000 
1988 -142,000 0.280 5.35 318,000 
1989 -121,000 0.249 5.28 256,000 
1990 -86,900 0.273 5.21 253,000 
1991 -157,000 0.230 5.35 273,000 
1992 -305,000 0.150 5.61 329,000 
1993 -66,700 0.282 5.14 256,000 
1994 -130,000 0.216 5.30 265,000 
1995 -33,000 0.336 4.99 269,000 
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APPENDIX 
 
Values of uL WW  and  for k =13,…, 500. 
 

Table 3 - Values of of  WL and WU for given k. 
k WL×103 WU×103 

13 53.84 159.95 
14 48.96 140.63 
15 45.65 127.56 
16 43.15 118.33 
17 40.77 109.50 
18 38.65 101.71 
19 36.85 95.04 
20 35.07 88.88 
21 33.36 83.60 
22 32.10 78.73 
25 28.54 67.21 
30 24.17 53.55 
40 18.64 37.71 
50 15.18 28.95 
60 12.88 23.29 
80 9.89 16.84 
100 8.02 12.96 
200 4.19 5.94 
500 1.80 2.26 




