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ABSTRACT 

Determination of the material parameters is one of the key challenges of numerical fire simulation 
attempting to predict, rather than prescribe the heat release rate. In this work, we use common fire 
simulation software and genetic algorithms to estimate the kinetic reaction parameters for wood 
components, birch wood, PVC and black PMMA. Parameters are estimated by modelling 
thermogravimetric experiments and minimizing the error between the experimental and numerical results. 
The implementation and choice of the parameters for the genetic algorithm as well as the scheme to 
describe wood pyrolysis are discussed. 

KEYWORDS: pyrolysis model, genetic algorithms, fire simulation, thermogravimetry 

NOMENCLATURE  

Aαβ Frequency factor (s-1) Greek  
Ap Penalty of parameter A ρ Mass concentration or density (kg/m3) 
Eαβ Activation energy (kJ/mol) ω Weight in fitness function 
ΔH Heat of reaction (kJ/kg) subscripts  
M Mass fraction (kg/kg) α Material index 
M  Average of mass fraction (kg/kg) β Reaction index 
m Sample mass (kg) 0 Initial value 
N Number of variables in a model. i Index over time series 
nαβ Reaction order exp Experimental 
R Universal gas constant (8.31431 J/K.mol) max Upper bound 
Sα Mass production for material α min Lower bound 
T Temperature (K) mod Model  
fV Fitness value   

INTRODUCTION 

The numerical simulation of fires is used extensively as a tool in performance based design of buildings 
and ships. Although such a design often relies on the use of prescribed design fires, there is an increasing 
need for a capability to predict the fire spread. There are several challenges associated with the fire spread 
simulations, including the difference in scales of close field heat transfer and the largest resolved scales of 
the geometry, physical and numerical modelling of the mass and heat transfer phenomena within the 
condensed phase and the definition of the necessary model parameters. During the recent update of the Fire 
Dynamics Simulator (FDS) to version 5 [1], the treatment of the condensed phase pyrolysis reactions was 
significantly changed, allowing the definition of a wide range of reactions of varying complexity. Increased 
complexity has an evident drawback of increased number of model parameters. Quite often, these 
parameters can not be found directly from literature because the parameters are not material constants by 
nature. Instead, they are always associated with a specific model of the material, and they should be 
determined using the exactly same or very similar model.  

The reaction parameters for fire models are often estimated by varying the parameters until the model 
reproduces the measured behaviour in some laboratory experiment. Small scale experiments are typically 
preferred for the estimation while larger experiments serve as validation tests. It depends on the type of the 
test, whether it can yield estimates for the thermal parameters or kinetic reaction parameters or both. 
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Mathematically, the parameter estimation process can be presented as an optimization problem. In the 
recent papers of Lautenberger et al. [2] and Rein et al. [3], Genetic Algorithms (GA) were used for the 
optimization to estimate the thermal material properties from bench scale experiments [2] and kinetic 
parameters from thermogravimetric experiments [3]. In this work, we use the ideas of the above mentioned 
authors to determine the kinetic reaction parameters for the modelling of pyrolysis behaviour of selected 
solid materials, including wood and its components, polyvinylchloride (PVC) and polymethyl methacrylate 
(PMMA). The reactions are modelled using FDS and the practical aspects associated with the use of 
genetic algorithms are studied. 

METHODS  

Experiments 

In this work, the kinetic parameters of selected solid materials were determined using Thermogravimetric 
Analysis (TGA) [4]. In addition, Differential Scanning Calorimetry (DSC) was used to determine the heat 
of reaction. In both experiments, just 10-50 mg of sample material is needed. A small furnace is heated at 
constant heating rate (heating rate typically 2-20 K/min) so that the temperature of the sample is in 
equilibrium with the environment all the time. The purge gas can be air or nitrogen (N2). These 
thermoanalytical experiments were carried out at the Laboratory of Inorganic and Analytical Chemistry, 
Helsinki University of Technology, using Netzsch STA 449C equipment. The sample materials are listed in 
Table 1. 

TGA measures the sample mass as a function of temperature. In this paper, the results are presented as a 
fraction of the current mass to the initial mass 

0m
mM =  (1) 

The main difference between TGA experiments conducted in air and in N2 is that in air, direct oxidation 
reactions may take place parallel or after the pyrolysis reaction. Oxidation decreases the mass of material, 
so the residual mass is usually smaller in air than in N2. This is true for all the sample materials discussed in 
this work. In DSC, temperature of a sample is kept identical with reference sample and the energy needed 
for that is measured. In DSC data it is possible to see if the reaction is endothermic or exothermic. 
Sometimes it is even possible to measure the heat of reaction by integrating over the peak in the DSC 
curve. Nitrogen should be used as a purge gas if the heat of reaction is going to be measured. However, 
sometimes many parallel reactions take place simultaneously or the measurement is not accurate enough, 
and the DSC graph does not give the expected results.  

Table 1. Sample properties. The moisture-% is wet based. 

Material Description ρ 
(kg/m3) 

Moisture-
 % 

Cellulose (Avicel® PH-101) High purity cellulose powder. 360 4 
Lignin (alkali) Powder, 4 % sulphur, carbon typically 45 % - 65 % 494 8 
Xylan from birch wood Powder, xylose residues ≥90 % 312 7 
Birch - 550 3 
PVC Almost pure PVC pipe material. 1440 0 
Black PMMA ICI, Perspex 1180 0 

 

Kinetic modelling of pyrolysis reactions 

The condensed phase materials are modelled as mixtures of material components. In the modelling of 
condensed phase reactions, the rate of an individual condensed phase reaction β converting material α to 
something else is expressed as an Arrhenius equation 
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where ρα is the mass concentration of component α and ρs0 the original density of the material. The rate of 
change for the mass concentration of component α is  
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where Sα is the production rate of material α. is In words, the mass is consumed by all the reactions 
converting material α to something else and created by the reactions converting something else to α. If 
none of the reactions leaves solid residue, the sample volume is reduced correspondingly, thus retaining 
constant density.  

Kinetic parameters A, E and n depend both on the material and the assumed reaction scheme. They must be 
determined using some sort of experimental data. To estimate the kinetic parameters for Eq. (1), a 
numerical model of the TGA experiment was created using Fire Dynamic Simulator (FDS) version 5.0.2 
[1]. The model is very simple, consisting of only few gas phase control volumes and a single surface 
element to describe the sample material. A thin layer of sample material is heated by radiation from the 
surroundings with linearly increased temperature. The layer is thin enough to remain in equilibrium with 
the surroundings with a tolerance of few Kelvins. Gas phase convection and reactions are neglected and the 
sample backing is adiabatic.  

Correct interpretation of the model output is important when comparing the experimental results and model 
predictions. TGA results are presented as mass fractions M. The model, in turn, provides us with a sample 
density ρ which is sum of the individual mass concentrations. Direct comparison between M and ρ/ρ0 is 
possible if the sample volume does not change. For non-charring materials, such as PMMA, the sample 
volume is reduced and the mass fractions leading to ρ/ρ0 must be based on the initial sample volume. 

Parameter estimation 

The parameter estimation was performed by minimizing the error between a measured and simulated TGA 
result using Genetic Algorithm (GA) as a minimization technique. GA was chosen because it is effective 
for problems with several unknown variables, and can usually find a global minimum instead of converging 
to some local minimum. Recently, GA has been used for the parameter estimation of condensed phase 
reactions by Lautenberger et al. [2] and Rein et al. [3].  

Genetic algorithms are based on the idea of evolution and the procedure and the terminology is adapted 
from references [2], [3] and [5]. The process is iterative, and each iteration round corresponds to one 
generation. The first generation is initialized by generating random numbers for candidate solutions 
(individuals). An individual is a vector with real numbers corresponding to the unknown variables of the 
model. The individuals of a generation form a population. Population can be divided from the beginning 
into smaller subpopulations to keep up the variety of candidate solutions. Each generation goes through 
several processes. First, the goodness of an individual is tested using a fitness function returning a fitness 
value. According the fitness value, the individuals are ranked, and the best of them are selected to produce 
offspring. The offspring are formed by crossover, where the chosen individuals are set to pairs and each 
pair are changing alleles (values of variables) according the conditions of crossover. After that occur 
mutations, stochastically according to a predetermined mutation rate. In mutation, one value in an 
individual is replaced by a new random number. Then fitness values are calculated for the offspring and the 
best parents and offspring are chosen to the next generation. If population is divided into isolated 
subpopulations, some individuals migrate then between subpopulations bringing new genes and so 
maintaining variety. After each generation, the best individual is plotted, which enables the user to observe 
the action of algorithm. The process is repeated until the maximum number of iterations is finished or the 
user is satisfied with the result and stops the algorithm from outside. 
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The fitness function compares experimental data to model and returns a metrics of how good is the fit. This 
is often made by using least mean squares. Based on the numerical experiments, another feature was added 
to the fitness function: The results of the parameter estimation process are not unambiguous and several 
well-fitting parameters can be found for the same material. On the other hand, high values of pre-
exponential factors A were found to make the FDS simulations more prone for numerical fluctuations. An 
additional term was thus added to the fitness function to prefer the smaller values of A. The formula for the 
fitness value is  
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where M is mass fraction in TGA experiment and i goes over all the data. ω1 and ω2 are the weights of 
fitness function so that ω1+ω2 =1. Ap is the penalty of high parameter A, and has a form 

max

min

A
AA

Ap
−

=  (5) 

where A is the current value of the pre-exponential factor, Amin is its lower bound and Amax the upper bound. 
Weight ω2 should be in same order of magnitude as the differences in the fitness values of the best 
solutions. In the tests, these differences were around 15/1000. Too high weight would lead to small pre-
exponential factors giving inaccurate predictions. 

The population size and the division of one big population into smaller subpopulations are important when 
fast convergence to a possible local minimum must be avoided. Inside one population, the solution 
converges quite fast towards the best candidate solution. If there are many independent populations, the 
probability that one of the solutions is near the global minimum, is much higher. In test simulations, 
division to subpopulations was found to be even more important than the population size. The populations 
without separation converged very fast, no matter how big the number of individuals was in the population. 
On the other hand, when there were at least four subpopulations, each of them could have as few as 20 
individuals and the diversity was still maintained well enough. Mutation rate is used to control the 
maintenance of diversity. It expresses the probability of an individual to mutate during one generation. If 
the mutation rate is too low, the solution may converge to a local minimum, and if it is too high, good 
solutions may be lost. A good rule of thumb is to choose a mutation rate close to ratio 1/N, where N is 
number of variables. 

When TGA experiments are available at many different heating rates, the fitness value should be calculated 
considering all the rates, thus ensuring that the model is good in general, not only with one heating rate. To 
illustrate this, in Fig. 1 is shown a comparison of measured (solid lines) and simulated (dash lines) TGA 
results. The simulation used kinetic parameters that provided very good results at 2 K/min heating rate but 
poor predictions of the residue mass at others. 
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Fig. 1. TGA graphs of same kinetic parameters with different heating rates. 

The Genetic Algorithm application was implemented using Genetic Algorithm Toolbox for Matlab, 
developed by the Department of Automatic Control and Systems Engineering of The University of 
Sheffield, UK [6]. The toolbox is available for free at http://www.shef.ac.uk/acse/research/ecrg/getgat.html. 
The parameters used in the estimation are listed in Table 2. Many different combinations were studied and 
the listed parameters were found to give the best results in estimation of kinetic parameters. The variable 
and function names are consistent with the Genetic Algorithm toolbox. 

Despite the simplicity of the FDS model used for TGA simulation, the computational cost of the parameter 
estimation was quite high because the model had to be solved for every individual of every generation, and 
with each heating rate separately. Estimations for this work took from about 10 h to one day to run on a 
single CPU of a modern workstation. 

Table 2. Parameters of Genetic Algorithm application. 

Parameter Symbol in  
GA Toolbox 

Value 

Number of individuals. NIND 20 
Generation gap: The fractional 
difference between the new and old population sizes. 

GGAP 0.8 

Crossover rate. XOVR 0.7 
Mutation rate. MUTR 1/Number of variables 
Maximum number of generations. MAXGEN 1200 
Insertion rate: Fraction of offspring reinserted into the 
population. 

INSR 0.9 

Number of subpopulations. SUBPOP 4 
Migration rate. MIGR 0.2 
Number of genes per migration. MIGGEN 20 
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RESULTS 
Heats of reaction were achieved by integrating the reaction peaks of DSC data in nitrogen. Heat of reaction 
ΔH is the integral divided by consumed mass. Consistent values of ΔH were obtained at all the heating rates 
only for cellulose and birch. The value for cellulose was -482 kJ/kg and for birch -230 kJ/kg. Negative sign 
here means endothermic reaction. For comparison, di Blasi [7] has used ΔH = -418 kJ/kg for lignocellulosic 
fuel, which is relatively close to the value obtained here. However, it is considerably different from our 
value for birch.  

The kinetic parameters of several materials were estimated using genetic algorithm. TGA experiments were 
made in nitrogen (N2) because the focus was on the modelling of the pyrolysis (degradation) reactions. For 
each of the kinetic parameters, a range of possible values was defined, as shown in Table 3. The ranges can 
be chosen according the literature values, if available, or initial estimates. In the tests, the ranges were set 
unnecessarily wide on purpose to be able to study the variety of solutions. Unfortunately, the choice of the 
range may affect the results, as was demonstrated by running two version of the black PMMA with 
different bounds for the reaction order n. Experimental results at four different heating rates (2, 5, 10 and 
20 K/min) were used for the estimation. The iterations normally converged during the first 50 generations, 
but often the iteration process was continued at least up to 100, sometimes even 1000 generations. Most of 
the materials include some amount of moisture, and the evaporation of water was modelled as a one step 
reaction with own kinetic parameters. The numerical results are presented in Table 5 and as model 
behaviour in figures below. 

Table 3. Estimation ranges for sample materials. 

Material A (s-1) E (kJ/mol) n residue 

Cellulose [1010,1020] [100,300] [0,7] [0,1] 

Lignin (alkali) [1010,1020] [100,300] [0,7] [0,1] 

Xylan from birch wood [1010,1020] [100,300] [0,7] [0,1] 

Birch (all reactions) [1010,1020] [100,300] [0,5] [0,1] 

PVC (all reactions) [108,1020] [100,300] [0,4] [0,1] 

Black PMMA –estimation 1 [102,1010] [100,300] [0,2] - 

Black PMMA –estimation 2 [102,1010] [100,300] [0,7] - 

Components of wood 

The three main components of wood are cellulose, hemicellulose and lignin. Roughly 40-44 % of 
hardwood is cellulose, 23-40 % hemicellulose and 18-25 % lignin [8]. All the components of wood produce 
char in combustion but lignin yields most of the char. The sample of hemicellulose was xylan, which is 
dominant hemicellulose specie in birch wood. The samples of components were in powder form, so the 
densities and thermal characteristics may differ from real. However, the kinetics’ were assumed to be the 
same. Cellulose was modelled using di Blasi’s model [7] and simple one-step model. The di Blasi model 
was slightly more accurate, but did not differ from the one-step model significantly. For other components, 
simple one-step reactions were assumed. With lignin and xylan, the experimental TGA data is not the best 
possible: Unexpected mass losses in the ends of the graphs are seen, which makes it more difficult to 
decide the residual mass. The results at 2 K/min heating rate are shown in Fig. 2. All the models succeed to 
predict the total mass loss quite well and the reactions take place in correct temperature range. The 
dominant shapes of graphs are correct but small errors can be found close to the end of the pyrolysis period. 
The numeric values of the kinetic parameters are given in Table 5. 
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Fig. 2. TGA models of components of wood in N2. Heating rate is 2 K/min. 

Birch 

Birch is typical Finnish hardwood specie. When the temperature rises, the moisture of wood evaporates [8]. 
After this, the fibres start to degrade. The volatiles are now generated, and they consist of a combustible 
mixture of gases, vapours and tars. A solid carbon char matrix remains, and its volume is smaller than 
original volume of wood. The sample density was 550 kg/m3, which is higher than any of the component 
densities studied above. That is because the powders form of component samples.  

For modelling the pyrolysis of birch four different schemes were used: Scheme 1 was a sum of the one-step 
reactions of components (cellulose, hemicellulose and lignin) yielding independently certain amount of 
char. Besides of char, fuel gases are released. In this scheme, the mass fractions of the component variables 
were also estimated using GA, in order to achieve the total density of birch. Scheme 2 was a one-step 
reaction converting virgin solid to char. Schemes 3 and 4 were presented by Liu et al. in Ref. [9]. In 
Scheme 3, there are two separate pseudo-components, which both produce char and fuel gases in parallel. 
In Scheme 4, there is only one material that has two consecutive reactions. The reaction formulas are 
summarized in Fig. 3. 
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Fig. 3. Reaction schemes for birch. 

A comparison of the measured and predicted TGA curves at 2 K/min heating rate is shown in Fig. 4, and 
the fitness values corresponding to the last iteration are listed in Table 4. In scheme 1, the best model had 
the composition 44 % cellulose, 18 % lignin and 38 % xylan. Other parameters are listed in Table 5. 
According to a visual comparison and the fitness values, Scheme 2 gives the best prediction of the TGA 
curve, which suggests that the components in wood are behaving like a homogenous solid material rather 
than a mixture of three. Scheme 1 gave the worst results of all the studied schemes, and its fitness value 
was more than 10 times the fitness value of Scheme 2. 

Table 4. Fitness values of TGA results of birch schemes. 

Scheme 1 2 3 4 
Fitness value 0.0691 0.0069 0.0119 0.0123 

 

PVC 

The sample was almost pure polyvinyl chloride (PVC) pipe material. PVC undergoes two reactions: 
Release of hydrochloric acid between 200 and 300°C and the pyrolysis reaction of the remaining solid at 
about 400°C. The pyrolysis products are HCl, benzene and toluene [8]. Reactions were modelled by two 
pseudo-components, of which the first does not yield any tar and the second does. 

The mass fraction of volatiles was assumed to be 0.54 (taken directly from the graphs). A comparison of 
the measured and predicted TGA curves at the end of the parameter estimation is shown in Fig. 5. The solid 
lines denote the experimental data and the dash lines the model. Good predictions of the PVC pyrolysis are 
achieved at all heating rates. The numeric values of the kinetic parameters are given in Table 5. 

Black PMMA 

PMMA (Polymethyl methacrylate) is a non-charring thermoplastic that melts and then burns. The pyrolysis 
product is 100 % monomer [8] with no significant residue yield. Different from charring materials where 
the density decreases, in PMMA model the sample thickness decreases instead. This may cause problems 
when modelling TGA test where the sample is very thin from the beginning. As a result, care must be taken 
to define a sufficiently high sampling frequency for the numerical results.  
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Fig. 4. TGA models of birch in N2. Heating rate is 2 K/min. 

 

Fig. 5. TGA model of PVC in N2. 
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The estimation was made twice using different range for the reaction order parameter n. In the first run, the 
range was [0, 2] and in the second, it was [0, 7]. The result of estimation run 1 is shown in Fig. 6. Again, 
the solid line denotes the experimental data and the dash line the model. An accurate prediction of the mass 
loss is achieved at heating rates 5 and 10 K/min, and reasonably well at heating rates 2 and 20 K/min. The 
results of the estimation run 2 look very much the same and the model is considered as accurate as in 
estimation run 1. That suggests that the parameter sets can be chosen among various alternatives and the 
genetic algorithm can find solutions from desired range. The numeric values of the kinetic parameters are 
given in Table 5. 

 

Fig. 6. TGA of black PMMA in N2. 

CONCLUSIONS 

Kinetic pyrolysis model parameters were estimated for six different solid materials using FDS fire model 
and genetic algorithm for the estimation. The estimation parameters, such as variable bounds and time step 
size, were carefully chosen to minimize the effect of the estimation procedure. The results were promising 
and indicated that the thermogravimetric experiments and genetic algorithm can successfully be used for 
the parameter estimation in fire engineering. As the material models were created using the actual fire 
simulation tool, the results can be directly used in applications. The estimation process is computationally 
expensive, taking several hours to a day on a single computer, but needs to be performed only once for each 
material. Validation of the current parameters and estimation of the lacking ones is still needed to build a 
full parameter set for fire spread computation.  

Different reaction schemes were considered for the hardwood charring process. Best results were obtained 
using a simple one-step reaction for the pyrolysis. From the engineering viewpoint this is a very good result 
because the model simplicity means smaller number of unknown parameters to estimate and computational 
savings. Some of the resulting parameter values were quite different from those previously presented in 
literature. This demonstrates that the kinetic parameters are model dependent and should not be considered 
as fundamental material properties. The parameters should therefore be used only in models with similar 
structure. In addition, the estimation results are not unambiguous and there may be many suitable sets of 
parameters that predict the mass loss accurately. 
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Table 5. Kinetic parameters of materials, estimated using genetic algorithm. 

Material A (s-1) E (kJ/mol) n residue 
Moisture 1·1020 162 1 0 
Cellulose 2.68·1014 195 0.85 0.1 
Lignin 2.18·1010 138 7 0.567 
Xylan 5.78·1013 164 4.166 0.268 
Birch – scheme 2 7.51·1011 161 3.12 0.172 
Birch – scheme 3 – k1 8.64·1016 230 1 0.19 
Birch – scheme 3 – k2 1.3·1012 150 1 0.19 
Birch – scheme 4 – k1 9.26·1018 142 1 1 
Birch – scheme 4 – k2 3.91·1010 148 1 0.268 
Birch – scheme 4 – k3 1.05·1014 210 1 0 
PVC (chlorides) k1 6.12·1016 198 2.18 0 
PVC (solid)  k2 3.63·1013 219 2.08 0.589 
Black PMMA – estimation 1 2.43·109 146 1.758 0 
Black PMMA – estimation 2 1.35·109 143 4.01 0 
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