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ABSTRACT 

The local buckling behavior of steel sections subjected to fire is strongly affected by the nonlinear stress-
strain relationship of steel at elevated temperatures, non-uniform temperature distributions as well as 
thermal strains and stresses. This paper proposes a strain-based calculation model found to be particularly 
suitable for analyzing the load-carrying behavior of steel members subjected to local buckling and fire. 
This model uses strain-based capacity curves – based on a plastic mechanism and results of a 
comprehensive numerical parametric study – for calculating the load-shortening behavior of stiffened and 
unstiffened elements (internal compression parts and outstand flanges) under fire conditions. Additionally, 
the model takes into account thermal strains and stresses during heating in fire as well as uniform and non-
uniform temperature distributions. Strain-based models avoid classification of cross-sections and consider 
local buckling even for compact cross-sections. The strain-based calculation model accords well with 
results obtained from a parametric study using the finite element approach. 

KEYWORDS: steel, local buckling, strain-based calculation method, thermal stresses, structural design, 
finite element method, modeling. 

NOMENCLATURE LISTING 

b width of a cross-sectional element Npl,ε,θ strain-based maximum axial 
compression resistance 

ct translational spring stiffness Npl,y,θ resistance to axial force 
e0,w equivalent geometric imperfection T thickness of a cross-sectional 

element 
fp,θ proportional limit at elevated 

temperature 
Greek 

fp0.02,θ 0.2%-proof stress at elevated 
temperature 

εc strain corresponding to thermal 
elongation 

fy,θ effective yield strength at elevated 
temperature 

εmec mechanical strain 

fε,θ strain-dependent stress at elevated 
temperature 

εth thermal strain 

k spring stiffness ratio εth,σ thermal strain producing stress 
kp0.2,θ reduction factor for the 0.2%-proof 

stress at elevated temperature 
εtot total strain 

ky,θ reduction factor for the effective 
yield strength at elevated 
temperature 

θa steel temperature 

M/Mpl,α,ε,θ strain-based non-dimensional 
resistance to bending moment 

ψε strain ratio of the element (ratio 
between the translational 
displacements at the longitudinal 
edges of cross-section elements) 

Mpl,α,ε,θ strain-based maximum bending 
moment resistance 

 

N/Npl,ε,θ strain-based non-dimensional 
resistance to axial force 
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INTRODUCTION 

Fire design has become an important factor in the safe and economical design of steel structures and has 
attracted worldwide attention during recent years. In addition to sound construction practice for steel 
structures in fire, it is necessary to have safe, economical, and easy applicable calculation models for the 
fire design of steel members, especially in case of stability failure. Local buckling and the material 
behavior of steel at elevated temperatures have a strong influence on the cross-sectional resistance of steel 
sections in fire. In fire, steel members heat up at a rate depending on the fire conditions. The temperature 
distribution of the steel cross-sections can be either uniform or non-uniform. The distribution depends on 
the cross-section, the fire protection, and the heating conditions. At elevated temperatures in fire, the 
strength and stiffness of steel decreases rapidly, and the stress-strain relationship becomes distinctly 
nonlinear (cp. Fig. 1a). As a result, very large strains are required to reach yield strength and to take benefit 
of increasing the cross-sectional capacity due to plastification. Therefore, local buckling in fire conditions 
needs to be considered for more cross-sections than is usual in ambient temperature design. 

The common European fire design models [1] for thin-walled cross-sections are based on research results 
of Ala-Outinen and Myllymäki [2] and Ranby [3]. They adopt the ambient temperature approach – 
including the effective width method – for fire conditions. Further recent studies using the effective width 
approach and the cross-section classification in fire design are presented by Feng and Wang [4] and 
Heidarpour and Bradford [5]. The common calculation methods and the classification of cross-sections, 
however, do not consider the large strains required to reach yield strength at elevated temperatures. 
Additionally, the common methods are not appropriate for considering local buckling of compact sections 
as well as the influence of non-uniform temperature distributions, the nonlinear material behavior of steel at 
elevated temperatures, and thermal strains and stresses on the load-carrying behavior of steel sections. It 
was thus the aim of the study to review the current fire design procedure and to develop a novel calculation 
model for steel members subjected to fire, taking into account local buckling effects. 

This paper first reviews common calculation models for local buckling in fire. A novel calculation method 
using strain-based capacity curves for unstiffened and stiffened elements at elevated temperatures is then 
developed. Finally, the strain-based calculation model for stiffened elements in fire is extended for 
considering uniform and non-uniform temperature distributions as well as thermal strains and stresses. 

CALCULATION MODELS FOR LOCAL BUCKLING IN FIRE 

Open steel sections, such as C, U, Z, and I sections, consist of stiffened and unstiffened elements (internal 
compression parts and flange outstands). A stiffened element is defined as a flat element where both edges 
parallel to the direction of loading are supported, and an unstiffened element is a flat element where only 
one longitudinal edge is supported. For design, steel sections are usually considered to be made up of 
elements which are simply supported on three and four sides (Fig. 1b). If these elements are sufficiently 
slender, the section will develop local buckling at a load less than the yield resistance calculated with yield 
strength and gross cross-sectional area. The section will continue to carry additional loads by means of the 
redistribution of stress after local buckling occurs (post-buckling behavior). 

Common stress-based design leads to classification and associated geometric maximum width-to-thickness 
ratios. For the design of steel structures, static analysis may be performed using elastic and plastic moment 
distribution for the system and elastic or plastic stress distribution for the cross-section (Fig. 2b), resulting 
in the plastic-plastic, elastic-plastic, and elastic-elastic design methods. The demand for rotational capacity 
in the cross-section increases from elastic-elastic to plastic-plastic design. For thin-walled cross-section, 
the available rotational capacity may even be insufficient for an elastic-elastic design because of local 
buckling. In this case, the decrease in load-carrying capacity due to local buckling can be taken into 
account using different methods remaining in elastic-elastic-reduced design. Often four cross-section 
classes are connected to these methods (Fig. 2a). Classification is an easy and simplified way to satisfy the 
various ductility requirements. Every cross-section has ductility, but even compact sections may develop 
local buckling under large strains. After local buckling occurs, the moment-curvature graph of each cross-
section has a decreasing branch (Fig. 2a). However, the strain at which local buckling occurs is different: 
thin-walled cross-sections buckle under small strains below proportional strain, while compact sections 
may buckle only under strains much higher than yield strain at ambient temperature. 
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Fig. 1. (a) Stress-strain relationship at elevated temperatures for steel grade S235 according to EN 1993-1-2 

[1]; (b) cross-section with stiffened and unstiffened elements. 

In fire design, cross-sections are often for simplicity classified in the same way as in ambient temperature 
design (sometimes considering the temperature-dependent ratio of the yield strength and elastic modulus), 
although the rounded stress-strain relationship and the larger strains required to reach yield strength due to 
the nonlinear material behavior should be considered. The yield strain at elevated temperatures is multiple 
times higher than the maximum strains used for developing effective widths and maximum width-to-
thickness ratios in the plastic state at ambient temperature [6]. Even compact sections suitable for plastic 
design at ambient temperature develop local buckling at large strains necessary for reaching the effective 
yield strength in fire [7]. A simplified model based on elastic strains, presented in [7], shows the significant 
influence of strains on the cross-section classification, especially for sections predominantly subjected to 
axial compression. 
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Fig. 2. (a) Moment-curvature graph for class 1 to 4 members with linear-elastic perfectly-plastic stress-

strain relationship; (b) elastic and plastic design. 
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The common calculation models for fire design, e.g. [1], adopt the ambient temperature stress-based 
approach and consider local buckling effects only for thin-walled cross-sections – which develop local 
buckling even/almost at ambient temperature – by using the critical temperature approach or the effective 
width method in conjunction with the temperature-dependent 0.2%-proof stress. The effective width 
method, originally developed by von Kármán, Sechler and Donnell [8], simplifies the redistribution of 
stress by assuming that certain areas of the cross-section remain effective, the remainder being totally 
ineffective and to be regarded as a “hole” in the cross-section. For the fire design of cross-sections 
appropriate for plastic or elastic design (class 1-3 sections), EN 1993-1-2 [1], for example, uses the 
temperature-dependent strength reached at 2% strain as an effective yield strength. The common stress-
based calculation methods are not appropriate for considering local buckling of compact sections as well as 
the influence of non-uniform temperature distributions, the nonlinear material behavior of steel at elevated 
temperatures, and thermal strains and stresses on the load-carrying behavior of steel sections. Strain-based 
calculation methods, however, are found to be suitable in fire design. Strain-based methods separate the 
different influences on the load-carrying capacity, in particular the local buckling effect and the effect of 
the nonlinear stress-strain relationship. These approaches avoid classification, consider local buckling even 
for compact sections at large strains, and can be used for the design of all cross-sections. Additionally, the 
methods can consider the influence of the nonlinear stress-strain relationship of steel at elevated 
temperatures by using the actual strain-dependent stress obtained from either material tensile coupon tests 
or constitutive laws given in standards as well as uniform and non-uniform heating effects on the local 
buckling and the load-carrying behavior. Strain-based calculation methods for fire design use either strain-
based formulae for effective widths [9], the yield line approach [10], or strain-based capacity curves based 
on the plastic mechanism analysis or numerical studies using the finite element approach applied in this 
study. Table 1 summarizes the characteristic features of strain-based calculation methods and compares 
these methods to common stress-based methods. 

Table 1. Comparison of stress-based and strain-based calculation methods. 

 Stress-based calculation Strain-based calculation 
Calculation methods  Effective width method 

 Reduced stress method 
 Reduced thickness method 

 Strain-based effective width 
method 

 Plastic mechanism analysis 
 Strain-based capacity curves 

Separation of the influences no yes 
Classification of the cross-sections required not required 
Consideration of local buckling for 
compact sections 

no yes 

Consideration of the nonlinear 
stress-strain relationship 

no yes 

Design stress  Effective yield strength fy,θ 
 0.2%-proof stress fp0.2,θ 

 Strain-dependent stress fε,θ 

Calculation of the ultimate load yes yes 
Calculation of the load-shortening 
behavior 

no yes 

STRAIN-BASED CAPACITY CURVES 

The strain-based capacity curves consider the local buckling effects on the load-carrying behavior of steel 
sections at uniform elevated temperatures in fire. The capacity curves are used for calculating the entire 
load-shortening behavior including the ultimate capacity of unstiffened and stiffened elements. Therefore, 
the capacity curves separate the local buckling effects from the influence of the nonlinear stress-strain 
relationship of steel at elevated temperatures on the load-shortening behavior. The capacity curves are 
independent of the temperature and can be used for all temperatures. These curves depend on the 
shortening εtot, the width-to-thickness ratio b/t, the equivalent geometric imperfection e0,w for small strains, 
the strain ratio ψε of the mechanical loading (ratio between the translational displacements at the 
longitudinal edges of the element) and the boundary conditions. The strain-based capacity curves for 
unstiffened elements (outstand flanges) in pure compression are based on a plastic mechanism analysis; the 
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curves for stiffened elements (internal compression elements) are based on a comprehensive numerical 
study using the finite element approach. 

Unstiffened elements 

Unstiffened elements in pure compression (ψε = 1.0) have a major effect on the load-carrying capacity of 
steel sections, typically used for steel structures. Flanges, for example, decisively influence the resistance 
of I sections subjected to bending moments. The local plastic mechanism used to describe the load-
deflection behavior of unstiffened elements at elevated temperatures in fire consisted of two inclined yield 
lines and one yield line perpendicular to the direction of thrust (Fig. 3), cp. [11]. The relationship between 
the local buckling deflection wy including equivalent geometric imperfections and the longitudinal 
displacement (shortening) εtot was used for the analytical description of the non-dimensional axial load-end 
shortening behavior and the strain-based capacity curves (Fig. 4), cp. [12]. The strain-based capacity curves 
(Fig. 4) give the axial force N of unstiffened elements relative to the strain- and temperature-dependent 
maximum axial resistance Npl,ε,θ as a function of the end shortening εtot, the width-to-thickness ratio b/t, and 
the equivalent geometric imperfection e0,w. The maximum axial resistance Npl,ε,θ give the temperature-
dependent actual maximum resistance (without local buckling) as a function of the shortening εtot. This 
resistance is calculated as the product of the gross cross-sectional area and the temperature- and strain-
dependent stress fε,θ determined from either material tensile coupon tests or constitutive laws given in 
standards, e.g. EN 1993-1-2. Details of the plastic mechanism, the development of the strain-based capacity 
curves, and a comparison of the results according to the strain-based method to numerical results are given 
in [7, 10]. 
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Fig. 3. Plastic mechanism used for the strain-based capacity curves of unstiffened elements. 
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Fig. 4. Strain-based capacity curves for unstiffened elements at elevated temperature in fire (ψε = 1.0). 

Stiffened elements 

Stiffened elements, like webs of I sections, are subjected to pure compression (ψε = 1.0), pure bending (ψε 
= -1.0) or combined compression and bending (-1.0 < ψε < 1.0). The strain-based capacity curves for 
stiffened elements are developed from the results of a comprehensive numerical parametric study using the 
finite element approach. By using the finite element program Abaqus [13] geometrical and physical 
nonlinear calculations were performed. In the parametric study the internal axial forces and bending 
moments were calculated as a function of the maximum end shortening εtot, the width-to-thickness ratio b/t, 
the steel temperature θa, the boundary conditions (simply supported or fixed), and the strain ratio ψε. The 
stress-strain relationships used in the numerical calculations were based on the models on EN 1993-1-2 for 
steel grade S235 at elevated temperatures. The numerical calculations were performed displacement 
controlled with different strain ratios ψε using 4-node and 9-node shell elements respectively (designated as 
S4 and S9R5 of the Abaqus element library). The maximum total strain, calculated as the quotient of the 
maximum displacement u of the lateral edge and the lengths of the elements a, was εtot = u/a = 2% for 
elements in pure compression and 4% for elements in bending. The initial imperfections were scaled from 
eigenvectors according to the lowest eigenvalue. The values for the equivalent geometrical imperfections 
were chosen as e0,w = b/250. The critical length-to-width ratio α depends on the boundary conditions and 
the strain ratio ψε, and was taken as α = 1 for stiffened elements which are simply supported in uniform 
compression for example. Further details of the parametric study and the finite element model are given in 
[7]. 

Figure 5 exemplarily shows the non-dimensional axial load-end shortening behavior of stiffened elements 
simply supported on all sides at different temperatures possessing width-to-thickness ratios of 30 (left) and 
120 (right). The compact elements (b/t = 30) are suitable for plastic design (class 1) at ambient temperature 
and elastic-plastic design (class 2) in fire according to EN 1993-1-2. Unlike ambient temperature, the 
temperature-dependent plastic resistance Npl,y,θ – calculated as the product of the gross cross-sectional area 
and the temperature-dependent yield strength fy,θ at 2% strain – was not reached at elevated temperatures. 
The slender elements (b/t = 120) developed local buckling even at small strains less than yield strain at 
ambient temperature and have to be designed using e.g. the effective width method at both ambient and 
elevated temperatures for considering local buckling effects. Figure 5 (right) additionally compares the 
resistance for slender elements (b/t = 120) according to EN 1993-1-2 with numerical results. The analytical 
calculation method (EN 1993-1-2) for slender elements (class 4) in pure compression led to adequate 
design results in comparison to the numerical results. The temperature-dependent shape of the nonlinear 
stress-strain relationship, and in particular the ratio of the proportional limit fp,θ to the yield strength fy,θ, 
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illustrated in Table 2, markedly affected the non-dimensional axial resistance N/Npl,y,θ and the axial load-
shortening behavior. A large ratio fp,θ/fy,θ, for example at 200°C, led to a large non-dimensional resistance 
reached at a small end shortening, whilst a small ratio fp,θ/fy,θ, for example at 700°C, resulted in more 
ductile behavior and a smaller non-dimensional resistance reached at a larger end shortening (Fig. 5). 

Table 2. Ratio between the proportional limit fp,θ and the effective yield strength fy,θ according to [1]. 

Temperature θa [°C] 20 200 300 400 500 600 700 800 900 
fp,θ/fy,θ 1.0 0.807 0.613 0.42 0.462 0.383 0.326 0.455 0.625 
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Fig. 5. Non-dimensional axial load-shortening behavior of compact (left) and slender (right) stiffened 

elements at elevated temperatures in fire (ψε = 1.0) 

The axial load-shortening curves of Fig. 5 consider both the decrease of the load-carrying capacity due to 
local buckling effects and the increase of the load-carrying capacity due to the strain hardening as a result 
of the nonlinear material behavior. A separation and quantification of both influences were not possible 
using the non-dimensional value N/Npl,y,θ. However, it was also possible to give the axial force N relative to 
the strain-dependent maximum axial resistance Npl,ε,θ calculated as the product of the gross cross-sectional 
area and the temperature- and strain-dependent stress fε,θ. The difference between the axial force and the 
strain-dependent maximum resistance showed the influence of local buckling. Figure 6 shows the non-
dimensional strain-dependent axial load-shortening behavior of stiffened elements possessing width-to-
thickness ratios of 30 (Fig. 6 left) and 120 (Fig. 6 right) at different elevated temperatures. These different 
strain-dependent axial load-shortening curves were almost congruent, although the constitutive laws for 
steel are not similar at different temperatures. Minor variations of the non-dimensional strain-dependent 
axial load-shortening curves were primarily a result of the polygonal approximation of the stress-strain 
relationships. The influence of the Tangent modulus in the plastic range at elevated temperature could be 
neglected. The non-dimensional strain-dependent axial load-shortening curves were therefore, for 
simplification, independent of the temperature and their stress-strain relationship. Unified axial load-
shortening curves could be used as strain-based capacity curves for stiffened elements under fire conditions 
(Fig. 7). 
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Fig. 6. Non-dimensional strain-based axial load-shortening behavior of compact (left) and slender (right) 

stiffened elements at elevated temperatures in fire (ψε = 1.0) 

Figure 7 (left) shows the strain-based capacity curves for stiffened elements in uniform compression (ψε = 
1.0) at elevated temperatures in fire. The strain-based capacity curves are only influenced by the axial 
shortening εtot, the width-to-thickness ratio b/t, and the equivalent geometric imperfection e0,w. The 
geometric imperfections influenced the intersection point of the capacity curves with the axis of ordinates. 
The imperfections decreased the load-carrying capacity of the elements and avoided reaching the strain-
dependent maximum resistance of flat elements without imperfections (N/Npl,ε,θ = 1) even for small strains. 
However, the imperfections did not influence the capacity curves for large strains and corresponding large 
local buckling deflections. Figure 7 (left) shows that even compact elements develop local buckling for 
large strains. A parametric study showed that only very stocky elements (b/t < 16) did not develop local 
buckling until reaching 2% strain in pure compression. Therefore, the simplified classification for fire 
design and the use of the effective yield strength reached at 2% strain according to EN 1993-1-2 may lead 
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Fig. 7. Strain-based capacity curves for stiffened elements subjected to uniform compression (ψε = 1.0) 

(left) and pure bending (ψε = -1.0) (right). 
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to unconservative design results for compact elements in fire. Strain-based capacity curves could 
additionally be developed in the same way for stiffened elements in pure bending and combined 
compression and bending. Figure 7 (right) shows the strain-based capacity curves for stiffened elements 
subjected to pure bending (ψε = -1.0) in fire, as an example. These capacity curves for elements subjected 
to bending consider the temperature- and strain-dependent nonlinear stress distribution as a result of the 
different shapes of the nonlinear branches of the stress-strain relationship at different elevated 
temperatures. 

Strain-based capacity curves for stiffened and unstiffened elements in fire according to Figs. 4 and 7 can be 
used for calculating the entire load-shortening behavior of cross-sections including their ultimate capacity. 
The load-shortening curves are obtained by multiplying the values of the strain-based capacity curves with 
the strain-dependent resistance Npl,ε,θ or Mpl,α,ε,θ (considering the strain-dependent stress distribution). 
Figure 8 exemplarily compares the resistance of square hollow sections RHS 150x150x5 (steel grade S235) 
according to the strain-based calculation model with numerical results using the finite element approach 
(mean value 0.98, standard deviation 0.01). The numerical results were calculated on stub columns (length 
= 500mm) using the finite element program Abaqus [13] with 9-node shell elements (designated as S9R5 
of the Abaqus element library). The numerical calculations were performed displacement controlled and 
the stub columns were subjected to pure compression. Further details of the numerical calculations are 
given in [7]. Figure 8 additionally compares the cross-sectional capacity according to EN 1993-1-2 with the 
numerically determined resistance (mean value 1.27, standard deviation 0.13). The calculation method 
adopted by EN 1993-1-2 led to unconservative results, in particular for low elevated temperatures up to 
400°C. The use of the effective yield strength reached at 2% strain was the main reason for these 
unconservative results. Therefore, Fig. 8 additionally compares the resistance calculated with the gross 
cross-sectional area and the temperature-dependent 0.2%-proof stress fp,0.2,θ (EN 1993-1-2 2004 – fp0.2,θ), 
usually only be used for slender cross-sections (class 4). A parametric study on stub columns (RHS-
sections, I-sections) and the strain-based capacity curves developed showed that the commonly used 
calculation methods for the fire design considering local buckling effects shall be improved. In particular, 
the maximum width-to-thickness ratios for classification and the use of the effective yield strength reached 
at 2% strain for calculating the resistance of steel sections mainly subjected to compression should be 
reviewed. 

200 300 400 500 600 700 800

Nc,fi,R Model [kN]

200

300

400

500

600

700

800

Nc,fi,R  FEM [kN]

 20

200

300

400

500

Temperature θa

°C

EN 1993-1-2  (2004)

RHS 150x150x5

°C

°C

°C

strain-based model

Calculation model

°C

x = 1.27, σ = 0.13

x = 0.98,  σ = 0.01

EN 1993-1-2  (2004) − fp0.2,θ

x = 0.93,
σ = 0.08

0 50 100 150 200 250 300 350

Nc,fi,R Model [kN]

0

50

100

150

200

250

300

350

Nc,fi,R  FEM [kN]

600

700

800

900

Temperature θa

°C

EN 1993-1-2  (2004)

RHS 150x150x5

°C

°C

strain-based model

Calculation model

°C

EN 1993-1-2  (2004) -  fp0.2,θ

 
Fig. 8. Cross-section capacity of square hollow section RHS 150x150x5 (steel grade S235) subjected to 

axial compression at elevated temperatures – comparison between numerical results and results according 
to both the strain-based calculation model and EN 1993-1-2. 
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INFLUENCE OF HEATING ON THE LOCAL BUCKLING BEHAVIOR 

In fire, steel members heat up at a rate depending on the fire conditions. The temperature distribution of the 
steel cross-sections and their elements can either be uniform or non-uniform. The distribution depends on 
the cross-section, the fire protection and the heating conditions. The strain-based calculation model 
summarized in the previous section calculates the load-shortening behavior of elements in compression or 
bending. This model considers elevated temperatures in fire by using temperature-dependent stress-strain 
relationships suitable to represent conditions in standard fire tests. Calculation methods that consider the 
heating of the section in detail are more realistic for steel members in fire. These sophisticated models 
consider mechanical actions prior to ignition, thermal actions, restraining reactions due to neighboring 
members, and thermal creep effects, for example. 

The strain-based calculation model can be extended for considering heating effects on the local buckling 
behavior of stiffened and unstiffened elements. The extended model uses the strain-based capacity curves 
(Figs. 4 and 7), considers mechanical loading prior to heating as well as thermal restraining reactions due to 
neighboring members and can be used for both uniform and non-uniform heating. The model assumes that 
thermal creep effects are sufficiently considered using temperature-dependent stress-strain relationships 
(e.g. EN 1993-1-2). The model further assumes that the thermal elongation of the elements during heating 
is not restrained in direction perpendicular to the direction of the mechanical loading, leading to thermal 
stresses only towards the direction of thrust. In addition, the model considers uniform temperature 
distributions across the thickness of the elements – approximately given for common steel sections 
subjected to fire – and in the longitudinal direction. 

Uniform heating 

This section deals with the influence of a uniform heating on the local buckling behavior of steel sections 
and extends the strain-based calculation model for considering uniform heating effects. The axial load-
temperature behavior, including the critical temperature, of stiffened and unstiffened elements free to 
expand during uniform heating can easily be calculated using the model described in the previous section. 
The strain-based capacity curves (Figs. 4 and 7) could additionally be used for calculating the axial load-
temperature behavior of elements with thermal restraints in fire. The thermal elongation of the elements can 
be partially or fully restrained by neighboring members. The degree of restraining action could be 
considered by using a translational spring along the width of the element possessing the spring stiffness ct. 
The determination of the spring stiffness from the boundary conditions can be rather difficult; few details 
are given in [14]. The total strain εtot of elements, whose thermal elongation towards the direction of the 
mechanical loading was fully restrained, resulted from the sum of the mechanical εmec and the thermal 
strain εth. For stiffened and unstiffened elements with partial axial restraints, the total strain could be 
regarded as the sum of the mechanical and thermal strain less the strain εc for considering the thermal 
elongation of the elements. The axial thermal elongation depended on the neighboring members and thus 
on the spring stiffness ct. The ratio N/Npl,ε,θ for considering local buckling effects was determined as a 
function of the total strain εtot using the strain-based capacity curves presented in Figs. 4 and 7. The strain- 
and temperature-dependent strain fε,θ was also calculated as a function of the total strain εtot as well as the 
temperature θa. 

Figure 9 compares, as an example, the axial load-temperature behavior of compact (b/t = 30, left) and 
slender (b/t = 120, right) stiffened elements according to the strain-based calculation model to numerical 
results calculated using the finite element program Abaqus [13]. The axial force N is given relative to the 
plastic resistance at ambient temperature Npl,y,20°C calculated with the yield strength at ambient temperature 
and the gross cross-sectional area. The elements were loaded with an axial force (strain ratio ψε = 1.0) of 
70% of the ultimate resistance at ambient temperature according to finite element calculations prior to 
uniform heating. The stress-strain relationships at elevated temperatures were taken from EN 1993-1.2 for 
steel grade S235. The calculations used different values of the spring stiffness ratio k to model semi-rigid 
neighboring members providing different partial restraints. The value k represents the ratio between the 
stiffness of the neighboring members – represented by the spring stiffness ct – and the stiffness of the 
element (k = ct/[Ea,20°C

.(t/b)]). A value of k = 0 corresponds to a free thermal elongation; a value of k = ∞ 
corresponds to fully restraint. The thermal elongation of the elements was calculated with Abaqus [13] for 
simplicity. 
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Fig. 9. Non-dimensional axial load-temperature behavior of compact (b/t = 30, left) and slender (b/t = 120, 

right) stiffened elements with uniform heating for different boundary conditions for thermal elongation. 

The axial load-temperature curves according to the strain-based calculation model are almost congruent to 
the numerical results. The stiffness ratio k decisively influenced the axial load-temperature behavior. The 
maximum axial load increased for larger values of k due to thermal restraining reactions. The value of k 
additionally influenced the temperature corresponding to the maximum load: the temperature decreased for 
increasing values of k. The decreasing branch of the axial load-temperature curve can be regarded as the 
temperature-dependent maximum resistance of the stiffened elements in compression. Figure 9 (left) 
additionally compares the non-dimensional axial load-temperature curves to the non-dimensional stresses 
ky,θ = fy,θ/fy,20°C (ratio of the temperature-dependent yield strength at 2% strain to the yield strength at 
ambient temperature) and kp0.2,θ = fp0.2,θ/fy,20°C (ratio of the temperature-dependent 0.2% proof stress 
according to EN 1993-1.2 to the yield strength at ambient temperature). Figure 9 (left) shows again that the 
compact element (b/t = 30) did not reach yield strength at 2% strain due to local buckling. The temperature-
dependent 0.2%-proof stress could be used instead for the design of stiffened elements with a width-to-
thickness ratio of 30. 

The critical temperature of partially or fully restrained elements is defined as the temperature where the 
axial load drops below the (mechanical) axial load prior to heating. The critical temperature of compact 
stiffened elements was almost independent of the thermal elongation (Fig. 9 left). The parametric study 
showed, however, that the thermal restraints influenced the critical temperature of slender elements (Fig. 9 
right). The critical temperature decreased for increasing thermal restraints (larger values of k). The load-
carrying capacities of thermally restraint stiffened elements were less than their capacities without 
restraints. Due to the thermal restraints the local buckling deflections were increased during heating. Larger 
buckling deflections decreased the load-carrying capacity and reduced the critical temperature. The 
behavior was similar to slender (overall slenderness) steel columns without local buckling [15]. It has to be 
analyzed if the low critical temperatures of slender stiffened elements can be confirmed for thin-walled 
cross-sections and practical applications. 

Non-uniform heating 

This section deals with the influence of non-uniform heating on the local buckling behavior of steel 
sections and extends the strain-based calculation model for considering non-uniform heating effects. Non-
uniform temperature distributions of stiffened elements can be the result of fire exposures of steel cross-
sections on all sides or on one/three sides. Fire exposures on all sides often result in almost symmetrical 
temperature distributions and fire exposures on one/three sides often lead to an almost constant temperature 
gradient over the width of the elements (e.g. the web of a C-profile with fire exposure on one side). A non-
uniform heating causes thermal stresses even for elements with free thermal elongation towards the 
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direction of mechanical loading. A non-symmetrical temperature distribution results in bending moments 
even for elements subjected to pure mechanical compression (ψε = 1.0). 

The strain-based calculation model was extended to consider symmetrical non-uniform temperature 
distributions and non-uniform distributions with a constant temperature gradient during heating in fire. The 
simplified model (Fig. 10) assumed a constant mechanical strain ratio of ψε = 1.0 during heating. The 
model divided the stiffened elements into n layers that are free to expand (Fig. 10a). Every layer i 
possessed the temperature θa,i (b). These temperatures resulted in free thermal strains εth,i (c). The strain 
ratio of ψε = 1.0 led to stress-producing thermal strains εth,σ,i (d). The total strain εtot,σ,i (f) of every layer was 
the sum of the stress-producing thermal strain, the mechanical strain and the strain for considering the 
thermal restraints of the elements. The strain-dependent stress fε,θ,i (h) of every layer was calculated as a 
function of the total strain εtot,θ,i using the temperature-dependent stress-strain relationship (g). The ratio 
N/Npl,ε,θ for considering local buckling effects was determined as a function of the maximum total strain 
εtot,σ,i,max and the width-to-thickness ratio b/t using the strain-based capacity curves presented in Fig. 10 (i). 
The axial load of the element was calculated as the product of the ratio N/Npl,ε,θ for considering local 
buckling effects and the strain- and temperature-dependent maximum resistance. 
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Fig. 10. Layer model for stiffened elements with non-uniform temperature distribution. (a) Layers of the 

element; (b) temperature distribution; (c) free thermal strain; (d) stress-producing thermal strain; (e) 
mechanical strain; (f) stress-producing total strain; (g) temperature-dependent stress-strain relationship; (h) 

stress distribution and (i) strain-based capacity curve. 
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The simplified calculation model was verified with results of a numerical parametric study using the finite 
element program Abaqus [13]. The stiffened elements were loaded with an axial force (ψε = 1.0) prior to 
heating. The mechanical load corresponded again to 70% of the ultimate resistance at ambient temperature. 
Figures 11 and 12 exemplarily compares the axial load-maximum temperature behavior for compact (left) 
and slender (right) stiffened elements according to the strain-based calculation model to the results of the 
finite element calculations. The temperature increased uniformly from a uniform temperature of 20°C to a 
sinusoidal (Fig. 11) and triangular shaped (Fig. 12) temperature distribution. The maximum temperature 
(after heating) of the sinusoidal shaped distribution was 650°C in the middle of the element. The minimum 
temperatures at the edges were 500°C (after heating). The temperature difference between the middle and 
the edges of the element varied during heating from 0K at the beginning to a maximum difference of 150K 
after the heating. The maximum temperature of the triangular shaped distribution continuously varied from 
700°C at the edges to 750°C in the middle of the element after the heating (maximum temperature 
difference 50K). 

The simplified strain-based calculation model slightly overestimated the influence of the local buckling 
effect on the axial load-temperature behavior for a large difference in temperature between the middle of 
the element and its edges (Figs. 11 and 12). The difference in temperature increased during heating and was 
larger for the sinusoidal shaped temperature distribution (Fig. 11) than for the triangular shaped distribution 
(Fig. 12). The simplified model determined the local buckling effect as a function of the maximum stress-
producing total strain. The difference in strain (between the middle of the element and its edges) was 
neglected for the influence of local buckling on the temperature-dependent load-carrying capacity. The use 
of the maximum strain therefore resulted in lower values of the axial load. 
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Fig. 11. Non-dimensional axial load-maximum temperature behavior of compact (left) and slender (right) 

stiffened elements with sinusoidal shaped temperature distribution according to the strain-based model and 
finite element calculations. 
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Fig. 12. Non-dimensional axial load-maximum temperature behavior of compact (left) and slender (right) 
stiffened elements with triangular shaped temperature distribution according to the strain-based model and 

finite element calculations. 

The extended strain-based calculation model (Fig. 10) can also be used for calculating the load-maximum 
temperature behavior of stiffened elements with a constant temperature gradient over their widths. Figure 
13 shows the non-dimensional axial load-maximum temperature behavior (left) and the corresponding 
bending moment-maximum temperature behavior (right) of compact stiffened elements (b/t = 30) for a fire 
exposure from one/three sides as an example. The behaviors are given according to the strain-based model 
and numerical calculations using the finite element approach. The axial load and the bending moment are 
given relative to their corresponding resistances at ambient temperature considering plastic stress 
distribution for the bending resistance. The temperature increased steadily from a uniform temperature of 
20°C to a trapezoidal shaped distribution with maximum temperature of 700°C and 300°C respectively at 
the edges of the element (after heating). A positive bending moment characterized a shift of the neutral axis 
towards the colder edge of the element. The trapezoidal temperature distribution led to negative bending 
moments and a shift of the neutral axis towards the warmer edge during heating for temperatures below 
100°C. The strength and stiffness of steel below 100°C remained unchanged [1]. Therefore, the entire 
element possessed equal material properties during the first heatingphase. The larger thermal strains within 
the warmer region of the element led to larger strain-dependent stresses fε,θ,i and a shift of the neutral axis 
towards this edge. During the second heating phase, for temperatures above 100°C the shift of the neutral 
axis returned and the axis shifted towards the colder edge of the element. In this second phase, the strength 
and stiffness within the warmer region were more reduced than within the colder region. The neutral axis 
shifted towards the colder edge of the element, although the difference between the thermal strains still 
increased due to the larger differences in temperature. The strain-based calculation model considered all 
these effects and was able to calculate the axial load- and corresponding bending moment-temperature 
behavior, although the simplified method neglected local buckling effects on the bending moment-
temperature behavior for simplicity. 
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Fig. 13. Non-dimensional axial load-maximum temperature behavior (left) and corresponding bending 

moment-maximum temperature behavior (right) of compact stiffened elements (b/t = 30) with trapezoidal 
shaped temperature distribution. 

CONCLUSIONS 

Local buckling, the non-linear stress-strain relationship of steel at elevated temperatures, thermal strains 
and stresses, and non-uniform temperature distributions have a strong influence on the load-carrying 
behavior of steel sections subjected to fire. Under fire conditions, local buckling needs to be considered for 
more cross-sections than in ambient temperature design. The paper has shown that even compact sections 
suitable for plastic design at ambient temperature develop local buckling in fire. Commonly used 
calculation methods using the effective width method have difficulty describing local buckling in fire, 
especially for compact sections. It is necessary to review the current classification and the calculation 
methods using the effective yield strength reached at 2% strain for fire design. Strain-based calculation 
methods are more suitable for fire design. The paper has analyzed the local buckling behavior of steel 
sections in fire using a novel strain-based calculation model proposed for calculating the resistance of 
stiffened and unstiffened elements. The model uses strain-based capacity curves, and facilitates the 
calculation of the entire load-shortening behavior, including the decreasing branch. The strain-based model 
avoids classification and can be used for all sections. It considers the nonlinear stress-strain relationship of 
steel at elevated temperatures, non-uniform temperature distributions, and thermal strains and stresses. The 
novel calculation model accords well with results obtained from a parametric study which applies the finite 
element approach.  
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