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ABSTRACT 

This work consists of experimental and numerical investigations of heat impact and flame heights from 
fires in single burning item (SBI) tests. In the experiments, thin steel plate probes were developed, as an 
inexpensive and reliable alternative to heat flux gauges, to measure the surface heat flux, whilst flame 
heights were determined by analyzing the instantaneous images extracted from the videos of the 
experiments by a CCD camera. The experimental results were subsequently used to assess the accuracy of 
the CFD code, Fire Dynamics Simulator (FDS), for predictions of the surface heat flux and flame heights. 
The results indicated that although FDS V4.07 predicts reasonably flame heights, it underpredicts 
significantly the surface heat flux especially at higher heat release rates. Consequently, sensitivity of the 
parameters used in the radiation and soot models in FDS was examined. 

KEYWORDS: single burning item (SBI) tests, steel plate probes, surface heat flux, flame heights, CFD 
modelling, FDS 

INTRODUCTION 

Fires breaking out in corners have been identified as the worst scenario in fire development because in a 
corner fire less fresh air is entrained into the plume than in an unbounded fire resulting to higher thermal 
plume temperatures. Moreover, less air entrainment implies less mixing of the flame with ambient air, 
resulting in an increasing flame height. Consequently, hazards induced by a corner fire could be high 
concerning the temperature rise of structural elements, ignition and thus flame spread of combustible walls, 
and the time to flashover etc. Over the last decades, a number of experimental studies of corner fires have 
been reported in the literature [e.g. 1-7]. These studies generally fall in one of the following three types: a) 
flame height and plume flow [1-3], b) surface heat flux [5,7], and c) flame spread [4,6]. Of particular 
interest in this work are the surface heat flux and flame height. The corner fire configuration considered is 
the well-ventilated single burning item (SBI) test (EN 13823) [8], which serves well as an intermediate 
bridge linking the full-scale (e.g. the ISO room) tests and the small-scale (e.g. the cone calorimeter) tests.  

Surface heat fluxes from fires are usually measured with heat flux gauges; however if one wishes to map 
the whole surface in question a large number of heat flux gauges are needed which makes conducting 
experiments of this kind highly costly. Alternatively, researchers of the researchers’ group [9,10] have 
previously developed a type of thin steel plate probes, consisting of a thin steel plate flush mounted in an 
insulation material. In this work, a similar steel plate probe (25mm wide × 25mm long × 3.2mm thick) 
surrounded by insulation except for the exposed surface has been constructed; the instantaneous 
temperature of the steel plate is recorded by a Chromel-Alumel thermocouple. The first objective of this 
work was validation of thin steel plates as an inexpensive and reliable means for measuring heat flux in 
large-scale fire experiments. In the experiments, a number of steel plate probes were used to measure the 
surface heat flux on the inert walls. In order to obtain the flame height, a CCD camera was used to record 
the experiments, each of which lasted approximately 180 seconds. Instantaneous images were extracted 
from the videos, based on which the flame height was evaluated using an image processing technique [11]. 

The second objective of this work was to assess the accuracy of the large-eddy simulation (LES) based 
CFD code, Fire Dynamics Simulator (FDS) V4.07, originally developed at NIST [12], for predictions of the 
surface heat flux and flame heights. Over the last decade, FDS has been subject to extensive validation 
exercises for fire-related applications (a detailed list can be found in [12]). These studies generally led to 
the conclusion that FDS is capable of predicting reasonably well the flow and temperature fields. However, 
as noted by the code developer [12] for calculations in which the grid cells are on the order of a centimetre 
and larger, the temperature near the flame surface cannot be relied upon when computing the source term in 

 205

FIRE SAFETY SCIENCE–PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM, pp. 205-216

COPYRIGHT © 2008 INTERNATIONAL ASSOCIATION FOR FIRE SAFETY SCIENCE / DOI:10.3801/IAFSS.FSS.9-205



the radiation transport equation, especially because of the fourth power dependence of radiation on 
temperature. Furthermore, there is no explicit soot model in FDS, and the assumption that the local soot 
production is proportional to the local fuel burning rate (the proportional factor being soot yield), is also 
prone to errors in radiation calculations since soot is the dominate species that contributes to radiation in 
turbulent flames. To bypass these difficulties in radiation and soot modelling, a constant radiative fraction 
is used in FDS to define the minimum local radiation losses, which are determined experimentally. The 
third objective of this work was thus to examine the sensitivity of the model parameters in FDS, i.e. 
radiative fraction and soot yield, on the prediction of the surface heat flux. 

This paper consists of experimental procedures and results for surface heat fluxes and flame heights, 
comparisons of FDS predictions and measurements, and finally a sensitivity study of model parameters 
concerning radiation and soot modelling in FDS. 

EXPERIMENTS  

Experimental instrumentation 

Because the objective was to assess the heat impact and flame heights, instead of combustible materials 
which are used in standard SBI tests, two inert-wall panels perpendicular to each other were used in this 
study. These walls are constructed of 25mm thick insulation fibreboards (Fiberfax LD) (1m wide × 1.5m 
high). Prior to the tests, the standard propane burner used in the SBI test [8] was calibrated to ensure that it 
generates the desired burner output. The whole experimental set-up was placed under an extraction hood. 
The steel plate surface was painted with carbon black to ensure that surface absorptivity is close to one, and 
a Chromel-Alumel thermocouple was placed at back of the steel plate to record its temperature. In total, 42 
steel plate probes (21 on each panel) were used. On each panel, the steel plate probes were located at seven 
vertical locations (0.2-1.4m above the floor, with an even interval of 0.2m) and at three lateral locations 
(3.25, 16.5, and 29 cm to the corner). A schematic view of the locations of the steel plate probes is shown 
in Fig. 1. Additionally, two Gardon gauges, denoted by GG1 and GG2 as indicated in Fig. 1, were placed 
respectively 4cm (centre to centre) away from the steel plate probes L5 and R11. 
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Fig. 1. A schematic view of the locations of the steel plate probes and Gardon gauges. Texts L and R 

indicate left and right panels respectively, and numbers indicate the locations of the probes. 
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For the measurements of the surface heat flux, three HRRs, i.e. 30, 45 and 60 kW, were used. At each HRR 
level, three repetitive tests were conducted under the same test conditions, and the final results presented 
were taken as the average of these three tests. To determine the flame height, seven HRRs, i.e. 15, 25, 30, 
35, 45, 55 and 60 kW, were used, and all the experiments were video-recorded using a CCD camera (JVC 
KY-F55B) for approximately 180 seconds. 

Calibration of the steel plate probe in the cone calorimeter 

The steel plate probe was firstly calibrated in the cone calorimeter at known external heat fluxes. Figure 2 
compares the storage term in the steel plate probe with the Gardon gauge measurement at the initial stage 
of a sudden exposure, where the storage term in the steel plate probe is calculated as: 

dtdTcqstore δρ=′′  [1] 

where ρ is the density of steel, c the heat capacity of steel, δ the thickness of the steel plate, and dT/dt the 
temperature increase rate of the steel plate measured by the thermocouple. 

As shown in Fig. 2, after the heat flux stabilized at 10s or so, the average of the storage term by the steel 
plate is about 29kW/m2, whereas the Gardon gauge measurement has a nearly constant value around 
30kW/m2. This good agreement is due to the fact that at the early stage of a sudden exposure the 
temperature of the steel plate is low and thus surface convection and re-radiation losses and conduction 
heat losses to the insulation are negligible. Calibration results at other heat fluxes showed similar patterns, 
and the relative differences between the steel plate probes and Gardon gauge measurements were always 
within 10%. Since in the SBI test the flame establishes in few (2-5) seconds, the approximation using the 
storage term to represent the surface heat flux should still apply; the validity of this approximation will be 
further examined by comparison to the Gardon gauges measurements in the SBI tests. 
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Fig. 2. Comparison of the storage term in the steel plate probe with the Gardon gauge measurement at the 

initial stage of a sudden exposure in the cone calorimeter. 

 

EXPERIMENTAL RESULTS 

Measurements of the steel plate temperatures 

Figure 3 shows the temperature histories recorded by the thermocouples for one of the tests at 45kW. The 
steel plate probe tree corresponding to the results in Fig. 3 was located on the right panel and 3.25cm to the 
corner. Although the fire started at 70s, the calculation range was chosen from 90s to 120s (after the flame 
stabilized). From Fig. 3, it can be observed that the temperature at location R4 (0.4 m above the burner) 
increases most rapidly indicating the highest heat flux at this location. Furthermore, one can note that the 
temperatures over the calculation range increase almost linearly with time, implying that the storage terms 
in the steel plate as defined by Eq. 1 are almost constant.  
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Fig. 3. Temperature histories recorded by the thermocouples for a test at 45kW. The thermocouple tree was 

located on the right panel and 3.25cm to the corner. 

Derived heat fluxes 

From the temperature histories in Fig. 3, the instantaneous storage terms (heat fluxes) were calculated using 
Eq. 1, based on which the average surface heat fluxes were determined. Figure 4 showing the distribution 
of the derived surface heat flux at 30, 45, and 60 kW illustrates clearly an important feature of a corner wall 
fire that the heat flux distribution has a nearly symmetric structure. The heat flux on the right panel is 
slightly higher than the one on the left panel likely due to the air entrainment effect and the turbulent nature 
of the flame. The surface heat flux increases with the HRR as expected, and the maximum heat fluxes, 
found to be located about 0.4m above the burner, are 40, 55, and 60 kW/m2 at 30, 45 and 60 kW 
respectively. It is also observed that the heat flux isolines in Fig. 4 are more or less parallel to the corner 
centerline but the heat flux decreases quickly toward the edge of the plume due to air entrainment. 

In Table 1, the measurements of the steel plate probes (L5 and R11) are compared to those by the Gardon 
gauges (GG1 and GG2). The Gardon gauge measurements are systematically lower than the ones by the 
steel plate probes because the Gardon gauges were located 4cm further away from the corner than the steel 
plate probes compared (i.e. GG1 compared to L5, and GG2 to R11). A simple linear interpolation of the 
steel plate probes results shows a better agreement between the two sets of data. The average error of the 
measurements by the steel plate probes in comparison to the ones by the Gardon gauges is around 15%, 
which is slightly larger than the one found in the cone calorimeter tests. 

Table 1. Comparison of the steel plate probe and Gardon gauge measurements. 

 Gauges No 30 kW 45 kW 60 kW 

Heat flux (kW/m2) 

L5 16.8 21.5 30.2 
GG1 11.0 17.2 20.3 

Interpolation (L5 and L6) 13.5 17.7 23.7 
R11 12.2 21.8 25.9 
GG2 5.6 12.5 17.1 

 Interpolation (R11 and R12) 9.7 17.5 20.8 
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Fig. 4. Distributions of the derived surface heat flux on the left (left) and right (right) panels at different 

HRRs. X, Y coordinates are not in scale for illustration purpose. 

Determined flame heights 

The videos recorded were a succession of images taken at the rate of 25 images per second. Therefore, each 
video contains about 25×180 (4500) images. Because of the turbulent nature of the flame the instantaneous 
flame height fluctuates considerably. An image processing technique based on the flame presence 
probability [11] was used to determine the mean flame height. For each test, 180 images were randomly 
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selected, and a flame height was obtained for each image. For any measured flame height, a probability is 
related to it. In this case, a total number of 180 images (denoted by N) were analyzed for each test, thus 
every instantaneous flame height has a probability equal to 1/N. After sorting the instantaneous flame 
height in an ascending order, a cumulative curve was created. The result for one of the tests at 45kW is 
presented in Fig. 5, plotting the intermittency (denoted by I) as a function of the flame height (Hf), where 
we have adopted Zukoski’s criterions for the definitions of the maximum flame height (I = 0.05), mean 
flame height (I = 0.5) and continuous flame height (I = 0.95) [13]. 
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Fig. 5. Experimentally determined intermittency against flame height for a test at 45kW. 

By applying the above technique to the images at all the HRRs, the continuous, mean and maximum flame 
heights are plotted in Fig. 6 as a function of the HRR. The flame heights increase with the HRR as 
expected. The mean flame heights at 30, 45, and 60 kW are about 0.8, 1 and 1.25 m respectively. These 
results are consistent with the heat flux measurements in Fig. 4, where we note that these heights at 
different HRRs correspond to the surface heat fluxes from 25-30 kW/m2. 
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Fig. 6. Experimental continuous, mean and maximum flame heights at different HRRs. 

Dimensionless flame heights and heat fluxes 

The HRR can be expressed in its dimensionless form as: 
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where Q  is the experimental HRR, ρa the ambient air density, cp the specific heat of the ambient air, Ta the 
ambient air temperature, g the acceleration due to gravity, and D the fire source diameter and in this study 
assumed to be the length of the shortest side of the burner equal to 0.25m. 

In Fig. 7, the dimensionless mean flame height (Hf /D) is plotted against Q*, together with the correlations 
proposed by various researchers, i.e. 9.0*03.3 QDH f =  by Kokkala [2], 3/2*65.3 QDH f =  by Hasemi, 

and 5/2*62.604.2 QDH f +−=  by Heskestad [3]. A least squares fit to the dimensionless mean flame 

height gives: 588.0*3.886QDH f = , with a coefficient of confidence close to 1. As shown in Fig. 7, the 
correlation derived in this work is closest to Hasemi’s correlation, whereas Kokkala’s correlation gives 
lower flame heights and Heskestad’s correlation yields higher flame heights. It is worth pointing out that 
Heskestad’s correlation was developed by assuming that a fire burning against a wall could be modeled as 
there was an identical imaginary fire source mirrored on the other side of the wall [3], or in the case of a 
corner fire the actual fire source was considered as one quarter of the total fire source (actual and 
imaginary). The flame height was then calculated based on the total fire source burning as an open fire. 
This method tends to overpredict the flame height as shown in Fig. 7. 
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Fig. 7. Comparison of the dimensionless flame height Hf /D as a function of the dimensionless HRR Q* 

derived in this work with correlations proposed by various researchers [1-3]. 

Figure 8 plots the dimensionless heat flux ( ( ) QDHq f′′ , where q ′′  represents the derived heat flux using 
the steel plate probes) against a dimensionless height (Z/Hf), i.e. height (Z) normalized by the flame height 
(Hf), at different distances to the corner (i.e. 3.25, 16.5 and 29 cm). The dimensionless heat flux appears to 
be weakly dependent on the HRR, and the maximum dimensionless heat fluxes are almost the same at 
different HRRs. The dimensionless heat flux at 29cm (outside the flame region) is nearly constant, whilst 
those at 3.25 and 16.5 cm show an  initial increase with height up to Z/H f = 0.5, and then decrease quickly 
with a further increase in height. 

 211



0

0.1

0.2

0.3

0 0.5 1 1.5 2
Z /H f

(q
" 

· H
f · 

D
)/Q

30 kW
45 kW
60 kW

3.25cm

16.5cm

29cm

 
Fig. 8. Dimensionless heat flux ( ) QDHq f′′  against dimensionless height fHZ . Texts 29cm, 16cm and 

3.25cm represent the distances from the steel plate probe trees to the corner. 

 
NUMERICAL MODELLING 

In FDS combustion is modeled with a mixture fraction concept and thermal radiation is computed using a 
finite volume technique on the same grid as the flow solver [12]. It employs the finite-difference method, 
with second-order explicit predictor-corrector time discretisation and second-order central difference space 
discretisation. The time-step is determined dynamically during calculations based on the local control 
volume size and velocity to ensure computational convergence. 

In the present calculations, the whole domain (3m × 3m × 2.4m) consisted of 1.2 million control volumes 
(100X × 100Y × 120Z) with local refinement in the flaming region, and the smallest grid size is 2cm. Grid 
sensitivity tests showed that further refinement of the grid size has negligible effect on the simulation 
results. A uniform velocity profile was imposed at the exhaustion duct based on the experimental volume 
flow rate having an average value about 0.5 m3/s. Calculations were carried out on a FUJITSU SIEMENS 
PC with a 3.60GHz dual processor and 3GB of RAM. It took approximately 120 hours for a typical run of 
100 seconds physical time. The calculation results presented in this section are the average values over the 
last 10 seconds of the simulations. 

Surface heat fluxes 

Figure 9 shows comparisons of the FDS predictions and measured heat fluxes on both panels at different 
HRRs. The agreement between the two set of data is reasonable at 30kW; however the error increases 
considerably at higher HRRs. At 60kW, the model underestimates the heat flux by up to 40 %. These 
differences could be attributed in part to the uncertainties of the steel plate probes in the experiments (upto 
15% as discussed earlier), but more importantly to the accuracy of the sub-models in FDS. It is well known 
that the accuracy of combustion and radiation models has a paramount affect on the heat flux prediction. 
Although FDS provides a reliable flow solver, the mixture fraction combustion model could yield errors at 
large as 20% as suggested by the code developer [12] and the radiation model can not solve accurately the 
radiation equation with grid sizes in the order of centimeter due to the fourth power dependence of 
radiation on temperature. Furthermore, the assumption in FDS that the soot production is proportional to 
the local fuel burning rate would introduce errors in radiation calculations and in the prediction of gas 
temperature, and consequently in the prediction of the surface heat flux.  
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Fig. 9. Comparisons of the predictions and steel plate probe measurements. Captions 30, 45, 60 denote the 

HRR; L and R indicate the left and right panels respectively. In the legends, 29cm, 16cm and 3.25cm 
represent the distances from steel plate probe trees to the corner. 

Flame heights 

In Table 2, the predicted flame heights at different HRRs, which were obtained by examining the isosurface 
of the local HRR [14], are compared to the experimental ones. In contrast to the underprediction of the 
surface heat flux, FDS predicts reasonably flame heights. However one should keep in mind that due to the 
turbulent nature of the flame the uncertainties are high in determining the flame heights in both 
experiments and calculations. 

Table 2. Comparisons of the experimental and predicted flame heights at different HRRs. 

HRR Experiment (m) Prediction (m) 
30kW 0.8 0.9 
45kW 1.0 1.2 
60kW 1.25 1.4 
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Sensitivity of soot yield and radiative fraction in FDS 

In order to examine the sensitivity of the constant soot yield (denoted by Ys) used in FDS, its default value 
for propane (i.e. 0.01) has been modified to 0.05. Figure 10 shows the effect of Ys on the predictions of 
soot volume fraction and gas temperature at 60kW (because FDS underpredicts the surface heat flux 
especially at higher HRRs as shown in Fig. 9). The vertical line is located 4cm to both panels. The 
predicted soot volume fraction (fv) with a soot yield of 0.05 is about five times as that predicted with a 
value of 0.01 as expected and the maximum soot volume fraction found with Ys = 0.05 is around 1.3ppm. 
Interestingly the predicted higher soot volume fraction with higher Ys appears to have little effect on the 
predicted temperature as one would expect since higher soot volume fraction would result in higher 
radiation losses and thus lower gas temperature. The insensitivity of the gas temperature on Ys could be 
attributed to the fact that in FDS a radiative fraction (denoted by RF) is used (default value for propane is 
0.35). The actual radiation heat loss in a control volume is thus ),( HRRRFqMax fds × , where fdsq  is the 
local radiation heat loss calculated by the radiation model in FDS, and HRR is the local heat release rate 
calculated by FDS. Use of the radiative fraction implies that even with a higher soot volume fraction if 

fdsq  is less than HRRRF × , its value is neglected. 
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Fig. 10. Effect of soot yield on the predictions of soot volume fraction (fv) and gas temperature (T) at 

60kW (RF=0.35 in FDS). The vertical line is located 4cm to both panels. 

The combined effect of RF and Ys is shown in Fig. 11, which compares the predicted heat flux using 
different values of RF (0.0 and 0.35) and Ys (0.01 and 0.05). The thermocouple tree is on the right panel 
and 3.25cm to the corner. One clear observation is that use of the radiative fraction is essential for such 
applications since the predictions with RF = 0.0 and Ys = 0.01 (the results obtained using the radiation 
model in FDS) are significantly smaller than other simulation results and the experimental data. Another 
observation in Fig. 11 is that the predictions are closer to the measurements by increasing Ys, indicating the 
uncertainties in using a constant soot yield in FDS because the soot concentration could be larger inside the 
flames than the total yield outside. More accurate soot models are thus required on this note for 
applications where soot and radiation interaction is important. Recent efforts in this aspect include the work 
by Lautenberger et al. [15] and that by Beji et al. [16]. In [15], a semi-empirical model was developed 
involving polynomial fittings of the soot formation and oxidation rates, whereas the model in [16] was 
based on the soot formation rate from an analytical solution of a one-dimensional soot model using the 
smoke point height concept [17]. Both models have been implemented in FDS and validated against an 
experimental study of a laminar ethylene flame [18] and in general good agreements were found with the 
measurements in terms of soot volume fraction, gas temperature, and the flow field. However, in order to 
extend laminar soot models to turbulent cases for predictions of turbulent flames much work is still needed, 
which is currently being undertaken in the authors’ group. 
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Fig. 11. Effect of radiative fraction (RF) and soot yield (Ys) on the prediction of the surface heat flux at 

60kW. The radiation losses in the energy equation are calculated as ),( HRRRFqMax fds ⋅ . The 
thermocouple tree is on the right panel and 3.25cm to the corner. 

 
CONCLUSIONS 

Heat impact and flame heights from fires in the SBI tests were assessed by means of experiments and CFD 
simulations. Thin steel plate probes were used to measure the surface heat flux on inert walls, whereas a 
CCD camera was used to video-record the experiments, based on which flame heights were determined 
using an intermittency probability method. Experimental results were then used to assess the accuracy of 
the CFD code FDS for predictions of the surface heat flux and flame heights. The sensitivity of parameters 
in the radiation and soot models in FDS was also examined. The main conclusions of this work are: 

• The surface heat flux in the SBI tests was found to remain relatively constant in the continuous flame 
region (see Fig. 8), and the maximum surface heat flux, which increases with the HRR, is found to be 
located about 40cm above the burner for the three HRRs investigated; 

• The flame height was found to increase with the HRR as expected; the correlation between the 
dimensionless flame height and HRR derived in this work agrees reasonably with literature findings; 

• The accuracy of steel plate probes as a practical means for measuring the surface heat flux was 
demonstrated by comparison to Gardon gauge measurements in the cone and SBI tests, provided that 
the heating of the steel probe is fast (within few seconds). Note that in the cases where the heating is 
slow, steel plate probes can still be used to measure the steady heat fluxes by shielding the probes with 
inert boards prior to reaching the steady burning stage; 

• FDS predicts reasonably the flame heights (see Table 2) but underpredicts significantly the surface 
heat flux (see Fig. 9). Sensitivity studies showed that: 1) use of the radiative fraction in FDS is 
essential for predictions in which the grid size is in the order of centimeter because the radiation model 
can not solve accurately the radiation equation due to the fourth power dependence of radiation on 
temperature, and 2) use of a constant soot yield to represent the soot production in FDS is inaccurate 
even though the effect of soot on radiation is attenuated by use of the radiative fraction, and more 
accurate soot models are required for predictions of soot production in applications where soot and 
radiation interaction is important. 
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